若方程x2+y2+4x+2y+m=0表示圓,則實數(shù)m的取值范圍為
 
考點:二元二次方程表示圓的條件
專題:計算題,直線與圓
分析:圓的一般方程x2+y2+Dx+Ey+F=0(D2+E2-4F=0),若方程x2+y2+4x+2y+m=0表示圓,必須滿足42+22-4×m>0,解出即得.
解答:解:根據(jù)題意有42+22-4×m>0,∴m<5
故答案為:m<5.
點評:本題主要考查圓的一般方程,注意二元二次方程表示圓的條件限制.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

冪函數(shù)y=x m2-3m-4(m∈Z)的圖象如圖所示,則m的值為( 。
A、-1<m<4B、0或2
C、1或3D、0,1,2或3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

棱長為1的正方體ABCD-A1B1C1D1被以A為球心,AB為半徑的球相截,則所截得幾何體(球內(nèi)部分)的表面積為( 。
A、
4
B、
8
C、π
D、
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c∈(0,1),則對于(1-a)b,(1-b)c,(1-c)a說法正確的是( 。
A、不能都大于
1
4
B、都大于
1
4
C、都小于
1
4
D、至少有一個大于
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

棱長都是2的三棱錐的表面積為( 。
A、
3
B、2
3
C、3
3
D、4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的正(主)視圖與側(cè)(左)視圖均為如圖1所示,則在圖2的四個圖中可以作為該幾何體的俯視圖的是( 。
A、(1)(3)
B、(2)(4)
C、(1)(4)
D、(2)(3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

底面為正方形的四棱柱的側(cè)棱垂直于底面,若此四棱柱的底面邊長為1且各個頂點在一個直徑為2的球面上,那么該棱柱的表面積為( 。
A、1+4
2
B、2+4
2
C、8
D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知棱長為2的正方體(上底面無蓋)內(nèi)部有一個球,與其各個面均相切,在正方體內(nèi)壁與球外壁間將滿水,現(xiàn)將球向上提升,當球恰好與水面相切時,則正方體的上底面截球所得圓的面積等于(  )
A、
π3
9
B、
π2(6-π)
9
C、
6π-π3
3
D、
π3-2π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面向量
a
=(-2,m),
b
=(1,2),且
a
b
,則|
a
+3
b
|等于(  )
A、
5
B、2
5
C、3
5
D、4
5

查看答案和解析>>

同步練習冊答案