7.命題“若x>0,則${2^{3x-{x^2}}}<4$”的逆否命題為若${2^{3x-{x^2}}}≥4$,則x≤0.

分析 直接利用逆否命題寫出結(jié)果即可.

解答 解:命題“若x>0,則${2^{3x-{x^2}}}<4$”的逆否命題為:若${2^{3x-{x^2}}}≥4$,則x≤0.
故答案為:若${2^{3x-{x^2}}}≥4$,則x≤0.

點(diǎn)評(píng) 本題考查逆否命題的定義的應(yīng)用,基本知識(shí)的考查.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.化簡:
(1)$\frac{\sqrt{1-2sin11{0}^{°}cos29{0}^{°}}}{cos38{0}^{°}-\sqrt{1-co{s}^{2}16{0}^{°}}}$.
(2)$\frac{tan(3π-α)sin(-2π-α)sin(\frac{5π}{2}+α)}{cos(α-π)tan(3π+α)cos(α-\frac{3π}{2})}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知點(diǎn)P是邊長為4的正三角形ABC的邊BC上的中點(diǎn),則$\overrightarrow{AP}$•($\overrightarrow{AB}$+$\overrightarrow{AC}$)=24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.直線l:x-2y+5=0與圓C:x2+y2=9相交于A、B兩點(diǎn),點(diǎn)D為圓C上異于A、B的一點(diǎn),則△ABD面積的最大值為6+2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=|loga|x-1||(a>0,a≠1),若x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則 $\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$+$\frac{1}{{x}_{3}}$+$\frac{1}{{x}_{4}}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知全集I={0,1,2,3},集合A={1,2},B={2,3},則A∪(CIB)=( 。
A.{1}B.{2,3}C.{0,1,2}D.{0,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)在△ABC中,兩條高所在直線的方程分別為2x-3y+1=0和x+y=0,且它的一個(gè)頂點(diǎn)是A(1,2),求B、C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.從5個(gè)學(xué)生中(三男兩女)任取兩人參加某活動(dòng)
(1)選出一男一女的概率為多少.
(2)有女生被選中的概率為多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)命題p:x1和x2是方程x2-ax-2=0的兩個(gè)根,不等式|m-4|≤|x1-x2|對(duì)任意實(shí)數(shù)a∈[1,2]恒成立;命題Q:函數(shù)f(x)=3x2+2mx+m+$\frac{4}{3}$有兩個(gè)不同的零點(diǎn).求使“P且Q”為真命題的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案