17.設(shè)x5=a1(x-4)5+a2(x-2)4+a3(x-4)3+a4(x-2)2+a5(x-4)+a6,其中a1,a2,…,a6均為實數(shù),則a1-a2+a3-a4+a5-a6=-35

分析 利用賦值法,即可得出結(jié)論.

解答 解:由題意,令x=3,可得-(a1-a2+a3-a4+a5-a6)=35
所以a1-a2+a3-a4+a5-a6=-35
故答案為:-35

點評 本題主要考查二項式定理的運用,利用賦值法是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=|2x-a|+|2x+1|(a>0),g(x)=x+2.
(1)當(dāng)a=1時,求不等式f(x)≤g(x)的解集;
(2)若f(x)≥g(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an},{bn}滿足下列條件:a1=1,an+1-2an=2n+1,bn=an+1-an
(Ⅰ)求{bn}的通項公式;
(Ⅱ)設(shè){$\frac{1}{_{n}}$}的前n項和為Sn,求證:對任意正整數(shù)n,均有$\frac{1}{4}$≤Sn<$\frac{9}{20}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知$α∈(-\frac{π}{2},0),\;β∈(0,\;\frac{π}{4})$,$\frac{1}{2}-{sin^2}\frac{α}{2}=\frac{tanβ}{{1+{{tan}^2}β}}$,則有( 。
A.$2β-α=\frac{π}{2}$B.$2β+α=\frac{π}{2}$C.$2β-α=-\frac{π}{2}$D.$2β+α=-\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知拋物線 C:y2=2px(p>0),過焦點且斜率為1的直線m交拋物線C于A,B兩點,以線段AB為直徑的圓在y軸上截得的弦長為$2\sqrt{7}$.
(1)求拋物線C的方程;
(2)過點P(0,2)的直線l交拋物線C于F、G兩點,交x軸于點D,設(shè)$\overrightarrow{PF}={λ_1}\overrightarrow{FD},\overrightarrow{PG}={λ_2}\overrightarrow{GD}$,試問λ12是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知θ為三角形的一個內(nèi)角,且sinθ+cosθ=$\frac{1}{2}$,則方程x2sinθ-y2cosθ=1表示( 。
A.焦點在x軸上的橢圓B.焦在點y軸上的橢圓
C.焦點在x軸上的雙曲線D.焦點在y軸上的雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知2ax2+bx-3a+1≥0,在x∈[-4,4]上恒成立,求5a+b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知對于任意的a∈[-1,1],函數(shù)f(x)=ax2+(2a-4)x+3-a>0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知拋物線C:y2=4x的焦點為F,準(zhǔn)線為l,P是l上一點,Q是直線PF與C的一個交點,若$\overrightarrow{FP}=3\overrightarrow{FQ}$,則|QF|=(  )
A.$\frac{8}{3}$B.$\frac{4}{3}$C.2D.1

查看答案和解析>>

同步練習(xí)冊答案