若x+1>0,求x+
1
x+1
的最小值.
考點(diǎn):基本不等式
專題:不等式的解法及應(yīng)用
分析:變形利用基本不等式的性質(zhì)即可得出.
解答: 解:∵x+1>0,∴x+
1
x+1
=x+1+
1
x+1
-1≥2
(x+1)•
1
x+1
-1=1,
當(dāng)且僅當(dāng)x=0時(shí)取等號(hào).
∴x+
1
x+1
的最小值是1.
點(diǎn)評(píng):本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)lg4+lg25+4 -
1
2
-(4-x)0;
(Ⅱ)f(x)=ax+loga(x+1)(a>0且a≠1).在[0,1]上的最大值與最小值和為a,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中周期為π且為偶函數(shù)的是( 。
A、y=cos(2x-
π
2
B、y=sin(2x+
π
2
C、y=sin(x+
π
2
D、y=cos(x-
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:實(shí)數(shù)x滿足(x-a)(x-3a)<0,其中a>0,命題q:實(shí)數(shù)x滿足
x-3
x-2
≤0.
(1)若a=1且p∨q為假,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A={x|-2≤x≤5},B={x|x>a},A⊆B,則a取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

第十七屆亞運(yùn)會(huì)于2014年9月19日至10月4日在韓國(guó)仁川舉行.為了搞好接待工作,組委會(huì)在首爾大學(xué)某學(xué)院招募了12名男志愿者和18名女志愿者從事禮賓接待和語(yǔ)言翻譯工作,將這30名志愿者的身高(單位:cm)編成莖葉圖(如圖所示):

組委會(huì)安排決定:身高175cm以上(包含175cm)的志愿者從事禮賓接待,身高在175cm以下的志愿者從事語(yǔ)言翻譯.
(Ⅰ)如果從分層抽樣的方法從從事禮賓接待的志愿者和從事語(yǔ)言翻譯的志愿者中抽取5人,再?gòu)倪@5人中隨機(jī)選2人,那么至少有一人是從事禮賓接待的志愿者的概率是多少?
(Ⅱ)若從所有從事禮賓接待的志愿者中隨機(jī)選3名志愿者,用ξ表示從事禮賓接待的志愿者中女志愿者的人數(shù),試寫(xiě)出ξ的分布列,并求出ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知遞增等差數(shù)列{an}中的a2,a5是函數(shù)f(x)=x2-7x+10的兩個(gè)零點(diǎn).?dāng)?shù)列{bn}滿足,點(diǎn)(bn,Sn)在直線y=-x+1上,其中Sn是數(shù)列{bn}的前n項(xiàng)和.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i為虛數(shù)單位,則復(fù)數(shù)
1+2i
2-i
( 。
A、1B、iC、-1D、-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:在區(qū)間[1,+∞)上至少有一個(gè)x0,使得x03-x0-1>0,則¬p為( 。
A、?x∈[1,+∞),x3-x-1≤0
B、?x∈(-∞,1],x3-x-1≤0
C、?x0∈[1,+∞),x03-x0-1≤0
D、?x0∈(-∞,1],x03-x0-1≤0

查看答案和解析>>

同步練習(xí)冊(cè)答案