【題目】已知命題p:方程x2+mx+1=0有兩個不等的負實數(shù)根;命題q:方程4x2+4(m﹣2)x+1=0無實數(shù)根.
(1)若“¬p”為假命題,求m范圍;
(2)若“p或q”為真命題,“p且q”為假命題,求m的取值范圍.

【答案】
(1)解:由p得:△1=m2﹣4>0,﹣m<0,則m>2
(2)解:△2=16(m﹣2)2﹣16<0,則1<m<3,

∵“p或q”為真命題,“p且q”為假命題,

∴p,q一真一假,

①p真q假時: ,解得:m≥3,

②p假q真時: ,解得:1<m≤2,

∴m的取值范圍是:m≥3或1<m≤2


【解析】(1)根據(jù)四種命題之間的關系判斷即可;(2)通過討論p真q假,p假q真,從而得到m的范圍.
【考點精析】掌握復合命題的真假是解答本題的根本,需要知道“或”、 “且”、 “非”的真值判斷:“非p”形式復合命題的真假與F的真假相反;“p且q”形式復合命題當P與q同為真時為真,其他情況時為假;“p或q”形式復合命題當p與q同為假時為假,其他情況時為真.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點P(a,b)(ab≠0)是圓x2+y2=r2內的一點,直線m是以P為中點的弦所在直線,直線l的方程為ax+by=r2 , 那么(
A.m∥l,且l與圓相交
B.m⊥l,且l與圓相切
C.m∥l,且l與圓相離
D.m⊥l,且l與圓相離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(2,0),點B(﹣2,0),直線l:(λ+3)x+(λ﹣1)y﹣4λ=0(其中λ∈R).
(1)求直線l所經(jīng)過的定點P的坐標;
(2)若直線l與線段AB有公共點,求λ的取值范圍;
(3)若分別過A,B且斜率為 的兩條平行直線截直線l所得線段的長為4 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2ax+5(a>1),
(1)若f(x)的定義域和值域均是[1,a],求實數(shù)a的值;
(2)若f(x)在區(qū)間(﹣∞,2]上是減函數(shù),且對任意的x∈[1,a+1],都有f(x)≤0,求實數(shù)a的取值范圍;
(3)若g(x)=2x+log2(x+1),且對任意的x∈[0,1],都存在x0∈[0,1],使得f(x0)=g(x)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x , x∈(0,2)的值域為A,函數(shù)g(x)=log2(x﹣2a)+ (a<1)的定義域為B.
(Ⅰ)求集合A,B;
(Ⅱ)若BA,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線上任意一點到直線的距離比到點的距離大1.

(1)求曲線的方程;

(2)過曲線的焦點,且傾斜角為的直線交于點軸上方), 的準線,點上且,到直線的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A=R,集合B={y|y>0},下列對應關系中是從集合A到集合B的映射的是(
A.x→y=|x|
B.x→y=
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=( x , 函數(shù)g(x)=log x.
(1)若g(ax2+2x+1)的定義域為R,求實數(shù)a的取值范圍;
(2)當x∈[( t+1 , ( t]時,求函數(shù)y=[g(x)]2﹣2g(x)+2的最小值h(t);
(3)是否存在非負實數(shù)m,n,使得函數(shù)y=log f(x2)的定義域為[m,n],值域為[2m,2n],若存在,求出m,n的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)= ,x∈R.
(1)求證:對一切實數(shù)x,f(x)=f(1﹣x)恒為定值.
(2)計算:f(﹣6)+f(﹣5)+f(﹣4)+f(﹣3)+…+f(0)+…+f(6)+f(7).

查看答案和解析>>

同步練習冊答案