14.已知f(x),g(x)都是定義在R上的函數(shù),且滿足以下條件:
①f(x)=ax•g(x)(a>0,且a≠1;②g(x)≠0;③f′(x)•g(x)<f(x)•g′(x).
若$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,則實(shí)數(shù)a的值為(  )
A.$\frac{1}{2}$B.2C.$\frac{5}{4}$D.2或$\frac{1}{2}$

分析 先根據(jù)$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,得到含a的式子,求出a的兩個(gè)值,再由已知,利用導(dǎo)數(shù)判斷函數(shù)$\frac{f(x)}{g(x)}$=ax的單調(diào)性求a的范圍,判斷a的兩個(gè)之中哪個(gè)成立即可.

解答 解:由 $\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,得a1+a-1=$\frac{5}{2}$,
所以a=2或a=$\frac{1}{2}$.
又由f(x)•g′(x)>f′(x)•g(x),
即f(x)g′(x)-f′(x)g(x)>0,
也就是[$\frac{f(x)}{g(x)}$]′=-$\frac{f(x)•g′(x)-g(x)•f′(x)}{{g}^{2}(x)}$<0,
說(shuō)明函數(shù)$\frac{f(x)}{g(x)}$=ax是減函數(shù),
即0<a<1,故a=$\frac{1}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查了應(yīng)用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,做題時(shí)應(yīng)認(rèn)真觀察.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.A(l,0)是圓x2+y2=1上點(diǎn),在圓上其他位置任取一點(diǎn)B,連接A,B兩點(diǎn),則|AB|≤1的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)f(x)是定義在R上的函數(shù),其導(dǎo)函數(shù)為f′(x),若f(x)+f′(x)<1,f(0)=2016,則不等式exf(x)-ex>2015(其中e為自然對(duì)數(shù)的底數(shù))的解集為( 。
A.(2015,+∞)B.(-∞,0)∪(2015,+∞)C.(-∞,0)∪(0,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=x3+2x2-ax+1在區(qū)間(0,1)上不是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是(0,7).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)h(x)=2x-sinx,g(x)=lnx+3x,f(x)=$\frac{{{e^x}-{e^{-x}}}}{2}$,k(x)=$\frac{1}{x}$-x,則(  )
A.h(sin27°)>h(sin26°)B.g(20.1)>g(20.2C.f(π)<f(3)D.k(ln2)<k(ln3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=lnx-ax(a∈R)
(1)當(dāng)a=3時(shí),判斷函數(shù)g(x)=x2+f(x)的單調(diào)性;
(2)若a>0,函數(shù)f(x)在x=1的切線l也是曲線x2+y2+2x-8y+9=0的切線,求實(shí)數(shù)a的值,并寫出直線l的方程;
(3)若a=1,證明$|{f(x)}|>\frac{lnx}{x}+\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)函數(shù)f(x)=x3+ax2-9x-1(a<0).若曲線y=f(x)的斜率最小的切線與直線12x+y-6=0平行.
(1)求實(shí)數(shù)a的值;
(2)求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{2}$(p-2)x2+(2q-8)x+1(p>2,q>0).
(Ⅰ)當(dāng)p=q=3時(shí),求使f(x)≥1的x的取值范圍;
(Ⅱ)若f(x)在區(qū)間[$\frac{1}{2}$,2]上單調(diào)遞減,求pq的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且$\frac{a}$=$\frac{1+cosA}{cosC}$.
(1)求角A;
(2)若a=1,設(shè)邊BC的高線為AD,求AD的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案