2.已知函數(shù)f(x)=x3+2x2-ax+1在區(qū)間(0,1)上不是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是(0,7).

分析 求出函數(shù)的導(dǎo)數(shù),得到關(guān)于a的不等式組,解出即可.

解答 解:對(duì)函數(shù)求導(dǎo)可得,f′(x)=3x2+4x-a
函數(shù)f(x)=x3+2x2-ax+1在區(qū)間(0,1)上不是單調(diào)函數(shù),
∴$\left\{\begin{array}{l}{f(0)<0}\\{f(1)>0}\end{array}\right.$,解得:0<a<7,
故答案為:(0,7).

點(diǎn)評(píng) 題主要考查了函數(shù)的單調(diào)性與函數(shù)導(dǎo)數(shù)的關(guān)系的應(yīng)用,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.(1)求函數(shù)$f(x)=2cosxsin({x+\frac{π}{6}})$的單增區(qū)間;
(2)函數(shù)$y=3{cos^2}x-4cosx+1,x∈[0,\frac{π}{2}]$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)數(shù)列{an}的前n項(xiàng)和Sn,${a_1}=1,{a_n}=\frac{S_n}{n}+2(n-1)(n∈{N^*})$
(1)求證:數(shù)列{an}為等差數(shù)列,并求an與Sn
(2)是否存在自然數(shù)n,使得${S_1}+\frac{S_2}{2}+\frac{S_3}{3}+…+\frac{S_n}{n}-{(n-1)^2}=2015?$,若存在,求出n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.定義在R上的函數(shù)f(x)的圖象如圖所示,使關(guān)于x的不等式xf′(x)<0成立的是( 。
A.(-2,-1)∪(1,2)B.(-∞,-1)∪(0,1)C.(-1,0)∪(1,+∞)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.對(duì)于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x-3)f′(x)≤0,則必有( 。
A.f(0)+f(6)≤2f(3)B.f(0)+f(6)<2f(3)C.f(0)+f(6)≥2f(3)D.f(0)+f(6)>2f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如表.f(x)的導(dǎo)函數(shù)y=f'(x)的圖象如圖所示.下列四個(gè)命題:
x-1045
f(x)1221
①函數(shù)y=f(x)是周期函數(shù);
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
④函數(shù)y=f(x)-$\sqrt{2}$有4個(gè)零點(diǎn).
其中真命題的個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知f(x),g(x)都是定義在R上的函數(shù),且滿足以下條件:
①f(x)=ax•g(x)(a>0,且a≠1;②g(x)≠0;③f′(x)•g(x)<f(x)•g′(x).
若$\frac{f(1)}{g(1)}$+$\frac{f(-1)}{g(-1)}$=$\frac{5}{2}$,則實(shí)數(shù)a的值為(  )
A.$\frac{1}{2}$B.2C.$\frac{5}{4}$D.2或$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知直線y=kx+1與曲線 f(x)=x3+ax+b相切于點(diǎn)A(1,3).
(1)求a,b的值;
(2)求g(x)=2f(x)-(3x2+10x+6)在區(qū)間[-2,1]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)$f(x)=\frac{1}{x}+lnx$
(1)求函數(shù)在x=e處的切線方程
(2)寫出函數(shù)的單調(diào)增區(qū)間和最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案