16.設(shè)甲、乙兩個圓錐的底面積分別為S1,S2,母線長分別為L1,L2,若它們的側(cè)面積相等,且$\frac{{S}_{1}}{{S}_{2}}$=$\frac{9}{4}$,則$\frac{L_1}{L_2}$的值是$\frac{2}{3}$.

分析 設(shè)甲、乙兩圓半徑為r1,r2,由已知推導(dǎo)出$\frac{{r}_{1}}{{r}_{2}}=\frac{3}{2}$,由此能求出$\frac{{L}_{1}}{{L}_{2}}$的值.

解答 解:設(shè)甲、乙兩圓半徑為r1,r2
∵甲、乙兩個圓錐的底面積分別為S1,S2,且$\frac{{S}_{1}}{{S}_{2}}$=$\frac{9}{4}$,
∴$\frac{{{r}_{1}}^{2}}{{{r}_{2}}^{2}}$=$\frac{9}{4}$,∴$\frac{{r}_{1}}{{r}_{2}}=\frac{3}{2}$,
∵甲、乙兩個圓錐的母線長分別為L1,L2,它們的側(cè)面積相等,
∴πr1L1=πr2L2,
∴$\frac{{L}_{1}}{{L}_{2}}$=$\frac{π{r}_{2}}{π{r}_{1}}$=$\frac{{r}_{2}}{{r}_{1}}$=$\frac{2}{3}$.
故答案為:$\frac{2}{3}$.

點評 本題考查兩個圓錐的母線長的比值的求法,是基礎(chǔ)題,解題時要認真審題,注意圓錐的側(cè)面積公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,四棱錐P-ABCD的底面是邊長為a的正方形,側(cè)棱PA⊥底面ABCD,側(cè)面PBC內(nèi)有BE⊥PC于E,
(1)求證:PC⊥面BED.
(2)若BE=$\frac{1}{3}$a,試在AB上找一點F,使EF∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若關(guān)于x方程32x-2a•3x+4=0有兩個不同的正根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在Rt△AOB中,∠OAB=30°,斜邊AB=4,將△AOB繞直線AO旋轉(zhuǎn)得到△AOC,且二面角B-AO-C是直二面角,動點D在邊AB上.
(Ⅰ)求證:平面COD⊥平面AOB;
(Ⅱ)當D為AB的中點時,求異面直線AO與CD所成角的正切值;
(Ⅲ)求CD與平面AOB所成角的正切值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,PA⊥面ABCD,AB=BC=2,$AD=CD=\sqrt{7}$,$PA=\sqrt{3}$,G為線段PC上的點,∠ABC=120°
(Ⅰ)證明:BD⊥面PAC;
(Ⅱ)求PC與面PBD所成的角;
(Ⅲ)若G滿足PC⊥面GBD,求$\frac{PG}{GC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,PA⊥面ABCD,AB⊥AD,BC∥AD,AP=$\sqrt{2}$,AB=AD=1,BC=2,$\overrightarrow{BE}=\frac{1}{4}\overrightarrow{BC}$.
(I)求證:平面PAC⊥平面PDE
(II)求直線PC與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知棱長為2,各面均為等邊三角形的四面體,則其表面積為( 。
A.12B.$2\sqrt{3}$C.$4\sqrt{3}$D.$\frac{4}{3}\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.44B.32C.10+6$\sqrt{17}$D.22+6$\sqrt{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.數(shù)列{an}滿足a1=5,且$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{{{a_{n-1}}}}=\frac{2}{a_n}$(n≥2,n∈N*).
(1)求a2,a3,a4
(2)求數(shù)列{an}的通項公式;
(3)令bn=$\frac{a_n}{{11-2{a_n}}}$,求數(shù)列{bn}的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊答案