分析 (1)由a1=5,且$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{{{a_{n-1}}}}=\frac{2}{a_n}$(n≥2,n∈N*).分別令n=2,3,4,即可得出.
(2)設數(shù)列$\left\{{\frac{1}{a_n}}\right\}$的前n項和為Sn,利用遞推關系可得:$\frac{1}{{{a_{n-1}}}}=\frac{2}{a_n}-\frac{2}{{{a_{n-1}}}}$,得$\frac{3}{{{a_{n-1}}}}=\frac{2}{a_n}$即$\frac{a_n}{{{a_{n-1}}}}=\frac{2}{3}({n≥3})$,再利用等比數(shù)列的通項公式即可得出.
(3)${b_n}=\frac{a_n}{{11-2{a_n}}}=\left\{\begin{array}{l}5({n=1})\\ \frac{{10•{{({\frac{2}{3}})}^{n-2}}}}{{11-20•{{({\frac{2}{3}})}^{n-2}}}}({n≥2})\end{array}\right.$,變形利用單調性即可得出.
解答 解:(1)∵a1=5,且$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{{{a_{n-1}}}}=\frac{2}{a_n}$(n≥2,n∈N*).
分別令n=2,3,4,可得:
${a_2}=10,{a_3}=\frac{20}{3},{a_4}=\frac{40}{9}$.
(2)設數(shù)列$\left\{{\frac{1}{a_n}}\right\}$的前n項和為Sn,則${S_{n-1}}=\frac{2}{a_n}({n≥2}),{S_{n-2}}=\frac{2}{{{a_{n-1}}}}({n≥3})$,
∴$\frac{1}{{{a_{n-1}}}}=\frac{2}{a_n}-\frac{2}{{{a_{n-1}}}}$,得$\frac{3}{{{a_{n-1}}}}=\frac{2}{a_n}$即$\frac{a_n}{{{a_{n-1}}}}=\frac{2}{3}({n≥3})$,
∴{an}從第二項起成等比數(shù)列,又a2=10,
∴${a_n}=\left\{\begin{array}{l}5({n=1})\\ 10•{({\frac{2}{3}})^{n-2}}({n≥2})\end{array}\right.$.
(3)${b_n}=\frac{a_n}{{11-2{a_n}}}=\left\{\begin{array}{l}5({n=1})\\ \frac{{10•{{({\frac{2}{3}})}^{n-2}}}}{{11-20•{{({\frac{2}{3}})}^{n-2}}}}({n≥2})\end{array}\right.$,
由${b_n}=\frac{{10•{{({\frac{2}{3}})}^{n-2}}}}{{11-20•{{({\frac{2}{3}})}^{n-2}}}}({n≥2})$,
得${b_n}=\frac{10}{{11•{{({\frac{3}{2}})}^{n-2}}-20}}({n≥2})$,
所以當n=3時,${({b_n})_{min}}=-\frac{20}{7}$,
當n=4時${({b_n})_{max}}=\frac{40}{19}$,
但${b_1}=5>\frac{40}{19}$,
綜上所述,${({b_n})_{min}}={b_3}=-\frac{20}{7}$,(bn)max=b1=5.
點評 本題考查了等比數(shù)列的通項公式及其前n項和公式、數(shù)列的單調性、遞推關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com