A. | -2m | B. | 2m | C. | -m | D. | m |
分析 根據(jù)兩角和差的正弦公式進行化簡,利用三角函數(shù)的倍角公式即可得到結(jié)論.
解答 解:∵sin(α+β)sin(α-β)=$-\frac{1}{2}$[cos[(α+β)+(α-β)]-cos[(α+β)-(α-β)]]=$-\frac{1}{2}$(cos2α-cos2β)=2m,
∴cos2α-cos2β=-4m,
即(2cos2α-1)-(2cos2β-1)=-4m,
則2cos2α-2cos2β=-4m,
則2(cos2α-cos2β)=-4m,
∴cos2α-cos2β=-2m,
故選:A.
點評 本題主要考查三角函數(shù)值的化簡和求值,根據(jù)兩角和差的正弦公式以及倍角公式是解決本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-4,0] | B. | [2-2$\sqrt{2}$,2+2$\sqrt{2}$] | C. | [0,4] | D. | [-2-2$\sqrt{2}$,-2+2$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{14}-\sqrt{2}}{2}$ | B. | $\frac{\sqrt{14}+\sqrt{2}}{2}$ | C. | $\frac{\sqrt{6}-\sqrt{2}}{2}$ | D. | $\frac{\sqrt{6}+\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com