1.已知直線l:kx-y+1+2k=0(k∈R).
(1)證明:直線l過(guò)定點(diǎn);
(2若直線l交x軸負(fù)半軸于點(diǎn)A,交y軸正半軸于點(diǎn)B,O為坐標(biāo)原點(diǎn),設(shè)△AOB的面積為S,求S的最小值及此時(shí)直線l的方程.

分析 (1)直線l過(guò)定點(diǎn),說(shuō)明定點(diǎn)的坐標(biāo)與參數(shù)k無(wú)關(guān),故讓k的系數(shù)為0 可得定點(diǎn)坐標(biāo).
(2)求出A、B的坐標(biāo),代入三角形的面積公式化簡(jiǎn),再使用基本不等式求出面積的最小值,注意等號(hào)成立條件要檢驗(yàn),求出面積最小時(shí)的k值,從而得到直線方程.

解答 解:(1)證明:由已知得k(x+2)+(1-y)=0,
∴無(wú)論k取何值,直線過(guò)定點(diǎn)(-2,1).
(2)令y=0得A點(diǎn)坐標(biāo)為(-2-$\frac{1}{k}$,0),
令x=0得B點(diǎn)坐標(biāo)為(0,2k+1)(k>0),
∴S△AOB=$\frac{1}{2}$|-2-$\frac{1}{k}$||2k+1|
=$\frac{1}{2}$(2+$\frac{1}{k}$)(2k+1)=(4k+$\frac{1}{k}$+4)
≥$\frac{1}{2}$(4+4)=4.
當(dāng)且僅當(dāng)4k=$\frac{1}{k}$,即k=$\frac{1}{2}$時(shí)取等號(hào).
即△AOB的面積的最小值為4,此時(shí)直線l的方程為$\frac{1}{2}$x-y+1+1=0.即x-2y+4=0.

點(diǎn)評(píng) 本題考查過(guò)定點(diǎn)的直線系方程特征,以及利用基本不等式求表達(dá)式的最小值.考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.點(diǎn)(5$\sqrt{a}$+1,$\sqrt{a}$)在圓(x-1)2+y2=26的內(nèi)部,則a的取值范圍是0≤a<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)a,b,c∈R,則“1,a,b,c,16為等比數(shù)列”是“b=4”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S5=25,則a3的值為( 。
A.2B.5C.10D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.己知a,b∈R,下列命題正確的是( 。
A.若a>b,則$\frac{1}{a}$>$\frac{1}$B.若a>b,則$\frac{1}{a}$<$\frac{1}$C.若|a|>b,則a2>b2D.若a>|b|,則a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}中各項(xiàng)均為正數(shù),b1=1,且b2+S2=12,數(shù)列{bn}的公比$q=\frac{S_2}{b_2}$.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求數(shù)列{(-1)nan•bn}的前2n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知數(shù)列{an}中,a1=4且${a_n}=3{a_{n-1}}+{3^n}-2(n≥2,n∈{N^*})$.
(Ⅰ)證明:數(shù)列$\left\{{\frac{{{a_n}-1}}{3^n}}\right\}$為等差數(shù)列;
(Ⅱ)求數(shù)列{an-1}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知a<-1,函數(shù)f(x)=$\sqrt{({x}^{3}-1)^{2}}$+x3+ax(x∈R),求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在△ABC中,AB=2,cosA=-$\frac{1}{8}$,點(diǎn)D在BC邊上,且滿(mǎn)足AD=$\sqrt{2}$,2BD=DC,則cosB的值為$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案