17.已知集合A={y|y=$\sqrt{{x}^{2}-1}$},B={x|y=lg(x-2x2)},則∁R(A∩B)=( 。
A.[0,$\frac{1}{2}$)B.(-∞,0)∪[$\frac{1}{2}$,+∞)C.(0,$\frac{1}{2}$)D.(-∞,0]∪[$\frac{1}{2}$,+∞)

分析 求函數(shù)的值域得集合A,求定義域得集合B,
根據(jù)交集和補集的定義寫出運算結(jié)果.

解答 解:集合A={y|y=$\sqrt{{x}^{2}-1}$}={y|y≥0}=[0,+∞);
B={x|y=lg(x-2x2)}={x|x-2x2>0}={x|0<x<$\frac{1}{2}$}=(0,$\frac{1}{2}$),
∴A∩B=(0,$\frac{1}{2}$),
∴∁R(A∩B)=(-∞,0]∪[$\frac{1}{2}$,+∞).
故選:D.

點評 本題考查了求函數(shù)的定義域和值域的應(yīng)用問題,也考查了集合的運算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=sin2x圖象上的某點P($\frac{π}{12}$,m)可以由函數(shù)y=cos(2x-$\frac{π}{4}$)上的某點Q向左平移n(n>0)個單位長度得到,則mn的最小值為( 。
A.$\frac{5π}{24}$B.$\frac{5π}{48}$C.$\frac{π}{8}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=x2-ax($\frac{1}{e}$≤x≤e,e為自然對數(shù)的底數(shù))與g(x)=ex的圖象上存在關(guān)于直線y=x對稱的點,則實數(shù)a取值范圍是(  )
A.[1,e+$\frac{1}{e}$]B.[1,e-$\frac{1}{e}$]C.[e-$\frac{1}{e}$,e+$\frac{1}{e}$]D.[e-$\frac{1}{e}$,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)M是△ABC邊BC上的任意一點,$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{NM}$,若$\overrightarrow{AN}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,則λ+μ=( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,∠BAC=$\frac{2π}{3}$,P為∠BAC內(nèi)部一點,過點P的直線與∠BAC的兩邊交于點B,C,且PA⊥AC,AP=$\sqrt{3}$.
(Ⅰ)若AB=3,求PC;
(Ⅱ)設(shè)∠APC=θ,求$\frac{1}{PB}$+$\frac{1}{PC}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線(實線和虛線)為某幾何體的三視圖,則該幾何體外接球的表面積為( 。
A.24πB.29πC.48πD.58π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),α∈[0,π)),在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,曲線C2:ρ=4cosθ.
(Ⅰ)求C2的直角坐標方程;
(Ⅱ)若曲線C1與C2交于A,B兩點,且|AB|>$\sqrt{7}$,求α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.古代數(shù)學(xué)家楊輝在沈括的隙積數(shù)的基礎(chǔ)上想到:若由大小相等的圓球剁成類似于正四棱臺的方垛,上底由a×a個球組成,楊輝給出求方垛中圓球總數(shù)的公式如下:S=$\frac{n}{3}$(a2+b2+ab+$\frac{b-a}{2}$),根據(jù)以上材料,我們可得12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.定義在R上的函數(shù)f(x)滿足:f(2)=1,且對于任意的x∈R,都有f′(x)<$\frac{1}{3}$,則不等式f(log2x)>$\frac{lo{g}_{2}x+1}{3}$的解集為{x丨0<x<4}.

查看答案和解析>>

同步練習(xí)冊答案