7.函數(shù)y=sin2x圖象上的某點(diǎn)P($\frac{π}{12}$,m)可以由函數(shù)y=cos(2x-$\frac{π}{4}$)上的某點(diǎn)Q向左平移n(n>0)個(gè)單位長度得到,則mn的最小值為( 。
A.$\frac{5π}{24}$B.$\frac{5π}{48}$C.$\frac{π}{8}$D.$\frac{π}{12}$

分析 先求得m=sin(2•$\frac{π}{12}$)=$\frac{1}{2}$,故把函數(shù)y=sin2x圖象上的點(diǎn)P($\frac{π}{12}$,$\frac{1}{2}$),向右平移n個(gè)單位,可得Q($\frac{π}{12}$+n,$\frac{1}{2}$),根據(jù)Q在函數(shù)y=cos(2x-$\frac{π}{4}$)的圖象上,求得n的最小值值,可得mn的最小值.

解答 解:函數(shù)y=sin2x圖象上的某點(diǎn)P($\frac{π}{12}$,m)可以由函數(shù)y=cos(2x-$\frac{π}{4}$)上的某點(diǎn)
Q向左平移n(n>0)個(gè)單位長度得到,∴m=sin(2•$\frac{π}{12}$)=$\frac{1}{2}$.
故把函數(shù)y=sin2x圖象上的點(diǎn)P($\frac{π}{12}$,$\frac{1}{2}$),向右平移n個(gè)單位,可得Q($\frac{π}{12}$+n,$\frac{1}{2}$),
根據(jù)Q在函數(shù)y=cos(2x-$\frac{π}{4}$)的圖象上,
∴m=cos[2($\frac{π}{12}$+n)-$\frac{π}{4}$]=cos(2n-$\frac{π}{12}$)=$\frac{1}{2}$,∴應(yīng)有 2n-$\frac{π}{12}$=$\frac{π}{3}$,∴n=$\frac{5π}{24}$,
則mn的最小值為 $\frac{5π}{48}$,
故選:B.

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.用與球心距離為1的平面去截球所得的截面面積為π,則球的表面積為( 。
A.B.C.D.$\frac{8}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.北京時(shí)間3月15日下午,谷歌圍棋人工智能AlphaGo與韓國棋手李世石進(jìn)行最后一輪較量,AlphaGo獲得本場比賽勝利,最終人機(jī)大戰(zhàn)總比分定格在1:4.人機(jī)大戰(zhàn)也引發(fā)全民對圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱為“圍棋迷”.
非圍棋迷圍棋迷合計(jì)
301545
451055
合計(jì)7525100
(1)根據(jù)已知條件完成如圖列聯(lián)表,并據(jù)此資料判斷你是否有95%的把握認(rèn)為“圍棋迷”與性別有關(guān)?
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記所抽取的3名學(xué)生中的“圍棋迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X).
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(x2≥k00.050.010
k03.746.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖1所示,在邊長為4的菱形ABCD中,∠DAB=60°,點(diǎn)E,F(xiàn)分別是邊CD,CB的中點(diǎn),EF∩AC=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到如圖2所示五棱錐P-ABFED,且AP=$\sqrt{30}$,
(1)求證:BD⊥平面POA;
(2)求二面角B-AP-O的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=e2x-ax2+bx-1,其中a,b∈R,e為自然對數(shù)的底數(shù),若f(1)=0,f′(x)是f(x)的導(dǎo)函數(shù),函數(shù)f′(x)在區(qū)間(0,1)內(nèi)有兩個(gè)零點(diǎn),則a的取值范圍是( 。
A.(e2-3,e2+1)B.(e2-3,+∞)C.(-∞,2e2+2)D.(2e2-6,2e2+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.函數(shù)y=f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x-1.
(1)求f(x)的函數(shù)解析式;
(2)寫出函數(shù)f(x)的單調(diào)區(qū)間及最值;
(3)當(dāng)關(guān)于x的方程f(x)=m有四個(gè)不同的解時(shí),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知雙曲線的右焦點(diǎn)F為圓x2+y2-4x+3=0的圓心,且其漸近線與該圓相切,則雙曲線的標(biāo)準(zhǔn)方程是$\frac{x^2}{3}-{y^2}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.用輾轉(zhuǎn)相除法求240和288的最大公約數(shù)時(shí),需要做2次除法;利用更相減損術(shù)求36和48的最大公約數(shù)時(shí),需要進(jìn)行3次減法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={y|y=$\sqrt{{x}^{2}-1}$},B={x|y=lg(x-2x2)},則∁R(A∩B)=( 。
A.[0,$\frac{1}{2}$)B.(-∞,0)∪[$\frac{1}{2}$,+∞)C.(0,$\frac{1}{2}$)D.(-∞,0]∪[$\frac{1}{2}$,+∞)

查看答案和解析>>

同步練習(xí)冊答案