函數(shù)y=xcosx-sinx,x∈(0,2π)單調(diào)增區(qū)間是
 
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專(zhuān)題:導(dǎo)數(shù)的概念及應(yīng)用
分析:先求導(dǎo),進(jìn)而利用導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系即可得出.
解答: 解:∵函數(shù)y=xcosx-sinx,x∈(0,2π),
∴y′=-xsinx,
由-xsinx>0,x∈(0,2π),
化為sinx<0,x∈(0,2π),
解得π<x<2π.
故函數(shù)y=xcosx-sinx,x∈(0,2π)單調(diào)增區(qū)間是(π,2π).
故答案為(π,2π).
點(diǎn)評(píng):熟練掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的方法是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=log30.3,b=20.2,c=0.30.3,則a,b,c三者的大小關(guān)系是(  )
A、c>b>a
B、b>a>c
C、a>b>c
D、b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

與函數(shù)y=x有相同圖象的一個(gè)函數(shù)是( 。
A、y=
x2
B、y=logaax(a>0,a≠1)
C、y=(
x
2
D、y=
x2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lnx-px+1
(1)若當(dāng)x=2時(shí),f(x)取得極值,求p的值,并求f(x)的單調(diào)區(qū)間;
(2)若對(duì)任意的x>0,恒有f(x)≤0,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方體A1B1C1D1-ABCD中,AD=CD=4,AD1=5,M是線段B1D1的中點(diǎn).(1)求證:BM∥平面D1AC;
(2)求直線DD1與平面D1AC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
lnx
x
在區(qū)間(a,a+2)上單調(diào)遞增,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c為正數(shù).
(1)求證:
b
a
+
c
b
+
a
c
≥3;
(2)求證:
a
a+b
+
b
b+c
+
c
a+c
<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PDCE為矩形,ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=
1
2
CD=1,PD=
2

(Ⅰ)若M為PA中點(diǎn),求證:AC∥平面MDE;
(Ⅱ)求直線PA與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

tan2010°=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案