分析 (1)代入a值,解二次不等式即可;
(2)根據(jù)二次函數(shù)的性質(zhì)直接求解即可.
解答 解:(1)當(dāng)a=2時(shí),f(x)=ax2-x+a,
由f(x)>3得2x2-x+2>3 …(2分)
解得$x<-\frac{1}{2}$或x>1…(4分)
故不等式的解集為 (-∞,$-\frac{1}{2}$∪(1,+∞)(5分)
(2)二次函數(shù)有最大值,必須a<0…(6分)
由$\frac{{4{a^2}-1}}{4a}=-2$得4a2+8a-1=0,
解得$a=-1±\frac{{\sqrt{5}}}{2}$…(9分)
由于a<0,故實(shí)數(shù)$a=-1-\frac{{\sqrt{5}}}{2}$…(10分)
點(diǎn)評(píng) 考查了二次不等式和二次函數(shù)的基本性質(zhì),屬于基礎(chǔ)題型,應(yīng)熟練掌握.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | $\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7 | B. | 14 | C. | 21 | D. | 7(n-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | g(x)在(0,$\frac{π}{4}$)上單調(diào)遞增,且為奇函數(shù) | |
B. | g(x)的最大值為1,其圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱 | |
C. | g(x)在(-$\frac{3π}{8}$,$\frac{π}{8}$)上單調(diào)遞增,且為偶函數(shù) | |
D. | g(x)的周期為π,其圖象關(guān)于點(diǎn)($\frac{3π}{8}$,0)對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com