2.已知直線l與橢圓$\frac{x^2}{4}+\frac{y^2}{2}=1$交于A、B兩點,弦AB的中點為P(1,1),則直線l的方程是( 。
A.x+2y-3=0B.2x+y-3=0C.2x-y-1=0D.x-2y+1=0

分析 利用“點差法”可求得直線AB的斜率,再利用點斜式即可求得直線l的方程.

解答 解:設(shè)A(x1,y1),B(x2,y2),P(1,1)是線段AB的中點,
則x1+x2=2,y1+y2=2,
依題意,$\left\{\begin{array}{l}{{{x}_{1}}^{2}+2{{y}_{1}}^{2}=4}\\{{{x}_{2}}^{2}+2{{y}_{2}}^{2}=4}\end{array}\right.$,
①-②得:(x1+x2)(x1-x2)=-2(y1+y2)(y1-y2),
由題意知,直線l的斜率存在,
∴kAB=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=-$\frac{1}{2}$•$\frac{{x}_{1}+{x}_{2}}{{y}_{1}+{y}_{2}}$=-$\frac{1}{2}$,
∴直線l的方程為:y-1=-$\frac{1}{2}$(x-1),
整理得:x+2y-3=0.
P(1,1)在橢圓內(nèi),故成立.
故選A.

點評 本題考查橢圓的簡單性質(zhì)與直線的點斜式方程,求直線l的斜率是關(guān)鍵,也是難點,著重考查點差法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.觀察下列順序排列的等式:9×0+1=1;9×1+2=11;9×2+3=21;9×3+4=31…猜想第n個等式應(yīng)為( 。
A.9(n+1)+n=10n+9B.9(n-1)+(n-1)=10n-10C.9n+(n-1)=10n-1D.9(n-1)+n=10n-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在等比數(shù)列{an}中,a3=7,前3項之和S3=21,則公比q的值等于( 。
A.1B.-$\frac{1}{2}$C.1或$-\frac{1}{2}$D.-1或$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知定義在[-3,3]上的函數(shù)f(x)=(x2+ax+b)x,在x=±1處的切線斜率均為-1.有以下命題:
①f(x)是奇函數(shù);
②若f(x)在[s,t]內(nèi)遞減,則|t-s|的最大值為4;
③若方程f(x)-m=0有三個根,則m的取值范圍是$(-\frac{{16\sqrt{3}}}{9},\frac{{16\sqrt{3}}}{9})$;
④若對?x∈[-3,3],k≤f′(x)恒成立,則k的最大值為3.
其中正確命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.復(fù)數(shù)$z=3i+\frac{2}{1+i}$(i是虛數(shù)單位)在復(fù)平面內(nèi)對應(yīng)的點在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.觀察以下列出的表達式:$f(n,1)=\frac{1}{2}{n^2}+\frac{1}{2}n$,f(n,2)=n2,$f(n,3)=\frac{3}{2}{n^2}-\frac{1}{2}n$,f(n,4)=2n2-n,
…推測f(n,k)的表達式,由此計算f(10,20)=910.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.直線2x-y+1=0關(guān)于y軸對稱的直線方程是( 。
A.2x+y-1=0B.2x+y+1=0C.2x-y+1=0D.2x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知等差數(shù)列{an},a2=4,a5=10.
(1)求數(shù)列{an}的通項公式;
(2)若bn=($\sqrt{3}$)an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)量{an}中,a1=1,an+1=2an+3.
(1)求證:數(shù)列{an+3}是等比數(shù)列;
(2)求數(shù)列{an}通項公式.

查看答案和解析>>

同步練習(xí)冊答案