【題目】某廠生產(chǎn)某種零件,每個(gè)零件的成本為40元,出廠單價(jià)定為60元,該廠為鼓勵(lì)銷售商訂購,決定當(dāng)一次訂購量超過100個(gè)時(shí),每多訂購一個(gè),訂購的全部零件的出廠單價(jià)就降低0.02元,但實(shí)際出廠單價(jià)不能低于51元.
(1)當(dāng)一次訂購量為多少個(gè)時(shí),零件的實(shí)際出廠單價(jià)恰降為51元?
(2)設(shè)一次訂購量為x個(gè),零件的實(shí)際出廠單價(jià)為P元,寫出函數(shù)P=f(x)的表達(dá)式;
(3)當(dāng)銷售商一次訂購500個(gè)零件時(shí),該廠獲得的利潤(rùn)是多少元?如果訂購1000個(gè),利潤(rùn)又是多少元?(工廠售出一個(gè)零件的利潤(rùn)=實(shí)際出廠單價(jià)﹣成本)
【答案】
(1)解:設(shè)每個(gè)零件的實(shí)際出廠價(jià)恰好降為51元時(shí),一次訂購量為x0個(gè),則
因此,當(dāng)一次訂購量為550個(gè)時(shí),每個(gè)零件的實(shí)際出廠價(jià)恰好降為51元
(2)解:當(dāng)0<x≤100時(shí),P=60
當(dāng)100<x<550時(shí),
當(dāng)x≥550時(shí),P=51
所以
(3)解:設(shè)銷售商的一次訂購量為x個(gè)時(shí),工廠獲得的利潤(rùn)為L(zhǎng)元,
則
當(dāng)x=500時(shí),L=6000;當(dāng)x=1000時(shí),L=11000
因此,當(dāng)銷售商一次訂購500個(gè)零件時(shí),該廠獲得的利潤(rùn)是6000元;
如果訂購1000個(gè),利潤(rùn)是11000元
【解析】(1)由題意設(shè)每個(gè)零件的實(shí)際出廠價(jià)恰好降為51元時(shí),一次訂購量為x0個(gè),則 因此,當(dāng)一次訂購量為550個(gè)時(shí),每個(gè)零件的實(shí)際出廠價(jià)恰好降為51元;(2)前100件單價(jià)為P,當(dāng)進(jìn)貨件數(shù)大于等于550件時(shí),P=51,則當(dāng)100<x<550時(shí), 得到P為分段函數(shù),寫出解析式即可;(3)設(shè)銷售商的一次訂購量為x個(gè)時(shí),工廠獲得的利潤(rùn)為L(zhǎng)元,表示出L與x的函數(shù)關(guān)系式,然后令x=500,1000即可得到對(duì)應(yīng)的利潤(rùn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a為常數(shù),函數(shù)f(x)=x(lnx﹣ax)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2)( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其圖象向右平移 個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)f(x)的圖象( )
A.關(guān)于點(diǎn) 對(duì)稱
B.關(guān)于x= 對(duì)稱
C.關(guān)于點(diǎn)( ,0)對(duì)稱
D.關(guān)于x= 對(duì)稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個(gè)不同的零點(diǎn).
(1)求的取值范圍;
(2)記兩個(gè)零點(diǎn)分別為,且,已知,若不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,是等邊三角形,已知,.
(1)設(shè)是上的一點(diǎn),證明:平面平面;
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的直線方程:
(1)求經(jīng)過直線l1:x+3y﹣3=0和l2:x﹣y+1=0的交點(diǎn),且平行于直線2x+y﹣3=0的直線l的方程;
(2)已知直線l1:2x+y﹣6=0和點(diǎn)A(1,﹣1),過點(diǎn)A作直線l與l1相交于點(diǎn)B,且|AB|=5,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在(﹣∞,+∞)上的偶函數(shù),且在(﹣∞,0]上是增函數(shù),設(shè)a=f(log47),b=f(log 3),c=f(21.6),則a,b,c的大小關(guān)系是( )
A.c<a<b
B.c<b<a
C.b<c<a
D.a<b<c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合為集合的個(gè)非空子集,這個(gè)集合滿足:①從中任取個(gè)集合都有 成立;②從中任取個(gè)集合都有 成立.
(Ⅰ)若, , ,寫出滿足題意的一組集合;
(Ⅱ)若, ,寫出滿足題意的一組集合以及集合;
(Ⅲ) 若, ,求集合中的元素個(gè)數(shù)的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com