【題目】曲線y=x3﹣2x+1在點(1,0)處的切線方程為(
A.y=x﹣1
B.y=﹣x+1
C.y=2x﹣2
D.y=﹣2x+2

【答案】A
【解析】解:驗證知,點(1,0)在曲線上
∵y=x3﹣2x+1,
y′=3x2﹣2,所以k=y′|x1=1,得切線的斜率為1,所以k=1;
所以曲線y=f(x)在點(1,0)處的切線方程為:
y﹣0=1×(x﹣1),即y=x﹣1.
故選A.
欲求在點(1,0)處的切線方程,只須求出其斜率的值即可,故先利用導(dǎo)數(shù)求出在x=1處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問題解決.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)為定義在R上的奇函數(shù).且滿足f(3)=6,當(dāng)x>0時f′(x)>2,則不等式f(x)﹣2x<0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在“近似替代”中,函數(shù)f(x)在區(qū)間[xi , xi+1]上的近似值(
A.只能是左端點的函數(shù)值f(xi
B.只能是右端點的函數(shù)值f(xi+1
C.可以是該區(qū)間內(nèi)的任一函數(shù)值f(ξi)(ξi∈[xi , xi+1])
D.以上答案均正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的不等式2<log2(x+5)<3的整數(shù)解的集合為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司每月最多生產(chǎn)100臺警報系統(tǒng)裝置,生產(chǎn)x臺(x∈N*)的總收入為30x﹣0.2x2(單位:萬元).每月投入的固定成本(包括機械檢修、工人工資等)為40萬元,此外,每生產(chǎn)一臺還需材料成本5萬元.在經(jīng)濟學(xué)中,常常利用每月利潤函數(shù)P(x)的邊際利潤函數(shù)MP(x)來研究何時獲得最大利潤,其中MP(x)=P(x+1)﹣P(x). (Ⅰ)求利潤函數(shù)P(x)及其邊際利潤函數(shù)MP(x);
(Ⅱ)利用邊際利潤函數(shù)MP(x)研究,該公司每月生產(chǎn)多少臺警報系統(tǒng)裝置,可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x≤﹣1或x≥5},集合B={x|2a≤x≤a+2}.
(1)若a=﹣1,求A∩B和A∪B;
(2)若A∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某班學(xué)生喜歡打籃球是否與性別有關(guān),對本班50人進行了問卷調(diào)查,得到如下2×2列聯(lián)表:

喜愛打籃球

不喜愛打籃球

合計

男生

20

5

25

女生

10

15

25

合計

30

20

50

經(jīng)計算得到隨機變量K2的觀測值為8.333,則有%的把握認(rèn)為喜愛打籃球與性別有關(guān)(臨界值參考表如下).

P(K2≥K0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若集合A={x|x2=1},B={x|mx=1},且A∪B=A,則由實數(shù)m的值組成的集合為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機變量ξ服從正態(tài)分布N(1,σ2),若p(ξ>3)=0.023,則p(﹣1≤ξ≤3)等于

查看答案和解析>>

同步練習(xí)冊答案