19.為比較甲、乙兩地某月11時的氣溫情況,隨機選取該月中的5天中11時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:
①甲地該月11時的平均氣溫低于乙地該月11時的平均氣溫
②甲地該月11時的平均氣溫高于乙地該月11時的平均氣溫
③甲地該月11時的氣溫的標(biāo)準(zhǔn)差小于乙地該月11時的氣溫的標(biāo)準(zhǔn)差
④甲地該月11時的氣溫的標(biāo)準(zhǔn)差大于乙地該月11時的氣溫的標(biāo)準(zhǔn)差
其中根據(jù)莖葉圖能得到的正確結(jié)論的編號為(  )
A.①③B.①④C.②③D.②④

分析 根據(jù)莖葉圖中的數(shù)據(jù),分別求出甲、乙兩地某月11時氣溫這兩組數(shù)據(jù)的平均數(shù)、方差即可.

解答 解:由莖葉圖中的數(shù)據(jù)知,乙兩地某月11時的氣溫分別為:
甲:28,29,30,31,32
乙:26,28,29,31,31;
可得:甲地該月11時的平均氣溫為$\overline{{x}_{甲}}$=$\frac{1}{5}$(28+29+30+31+32)=30,
乙地該月11時的平均氣溫為$\overline{{x}_{乙}}$=$\frac{1}{5}$(26+28+29+31+31)=29,
故甲地該月11時的平均氣溫高于乙地該月11時的平均氣溫;①錯誤,②正確;
又甲地該月11時溫度的方差為${{s}_{甲}}^{2}$=$\frac{1}{5}$[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2
乙地該月14時溫度的方差為${{s}_{乙}}^{2}$=$\frac{1}{5}$[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=3.6,
故${{s}_{甲}}^{2}$<${{s}_{乙}}^{2}$,
所以甲地該月11時的氣溫標(biāo)準(zhǔn)差小于乙地該月11時的氣溫標(biāo)準(zhǔn)差,③正確,④錯誤.
綜上,正確的命題是②③.
故選:C.

點評 本題考查了數(shù)據(jù)的平均數(shù)與方差的計算問題,也考查了計算能力的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知a為實數(shù),函數(shù)f(x)=alnx+x2-4x.
(1)設(shè)g(x)=(a-2)x,若$?x∈[{\frac{1}{e},e}]$,使得f(x)≥g(x)成立,求實數(shù)a的取值范圍.
(2)定義:若函數(shù)m(x)的圖象上存在兩點A、B,設(shè)線段AB的中點為P(x0,y0),若m(x)在點Q(x0,m(x0))處的切線l與直線AB平行或重合,則函數(shù)m(x)是“中值平衡函數(shù)”,切線l叫做函數(shù)m(x)的“中值平衡切線”.試判斷函數(shù)f(x)是否是“中值平衡函數(shù)”?若是,判斷函數(shù)f(x)的“中值平衡切線”的條數(shù);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.△ABC中,AB=1,AC=2.
(1)若$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\frac{1}{2}$,求△ABC外接圓面積;
(2)若∠BAC的平分線交BC于D,且AD=$\frac{2}{3}$,求sin(B-C).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{x+\frac{1}{2},x∈[0,\frac{1}{2})}\\{{2^{x-1}},x∈[\frac{1}{2},2)}\end{array}}\right.$,若存在x1,x2,當(dāng)0≤x1<x2<2時,f(x1)=f(x2),則x1f(x2)-f(x2)的取值范圍為( 。
A.$(0,\frac{{2-3\sqrt{2}}}{4})$B.$[-\frac{9}{16},\frac{{2-3\sqrt{2}}}{4})$C.$[\frac{{2-3\sqrt{2}}}{4},-\frac{1}{2})$D.$[-\frac{9}{16},-\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知向量|$\overrightarrow{a}$|=2,$\overrightarrow{a}•\overrightarrow$=1,若|$\overrightarrow{a}+2\overrightarrow$|=3,則|$\overrightarrow$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合M={x|$\frac{1}{2}≤x<3$},函數(shù)f(x)=ln(1-$\sqrt{x}$)的定義域為N,則M∩N為( 。
A.[$\frac{1}{2}$,1]B.[$\frac{1}{2}$,1)C.(0,$\frac{1}{2}$]D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={3,$\sqrt{a}$},B={a,b},若A∩B={2},則A∪B=( 。
A.{2,3}B.{3,4}C.{$\sqrt{2}$,2,3}D.{2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知二次函數(shù)f(x)=ax2+bx+c的導(dǎo)數(shù)為f′(x),f′(0)>0,對于任意的實數(shù)x都有f(x)≥0,則$\frac{f(1)}{{{f^'}(0)}}$的取值范圍是( 。
A.$[\frac{3}{2},+∞)$B.[2,+∞)C.$[\frac{5}{2},+∞)$D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.使得函數(shù)y=3-cosx取得最大值的x的集合是(  )
A.{x|x=2kπ,k∈Z}B.{x|x=π+2kπ,k∈Z}C.{x|x=-$\frac{π}{2}$+2kπ,k∈Z}D.{x|x=$\frac{π}{2}$+2kπx,k∈Z}

查看答案和解析>>

同步練習(xí)冊答案