14.已知向量|$\overrightarrow{a}$|=2,$\overrightarrow{a}•\overrightarrow$=1,若|$\overrightarrow{a}+2\overrightarrow$|=3,則|$\overrightarrow$|=$\sqrt{3}$.

分析 根據(jù)題意,由|$\overrightarrow{a}+2\overrightarrow$|=3可得|$\overrightarrow{a}+2\overrightarrow$|2=($\overrightarrow{a}+2\overrightarrow$)2=($\overrightarrow{a}$2+2$\overrightarrow{a}$•$\overrightarrow$+$\overrightarrow$2)=9,將|$\overrightarrow{a}$|=2,$\overrightarrow{a}•\overrightarrow$=1代入其中可得$\overrightarrow$2的值,即可得答案.

解答 解:根據(jù)題意,若|$\overrightarrow{a}+2\overrightarrow$|=3,
則|$\overrightarrow{a}+2\overrightarrow$|2=($\overrightarrow{a}+2\overrightarrow$)2=($\overrightarrow{a}$2+2$\overrightarrow{a}$•$\overrightarrow$+$\overrightarrow$2)=9,
而|$\overrightarrow{a}$|=2,$\overrightarrow{a}•\overrightarrow$=1,
則有$\overrightarrow$2=9-2-4=3,
故|$\overrightarrow$|=$\sqrt{3}$;
故答案為:$\sqrt{3}$.

點(diǎn)評(píng) 本題考查向量數(shù)量積的運(yùn)算,涉及向量的模的計(jì)算,關(guān)鍵是熟練掌握向量數(shù)量積的計(jì)算公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.當(dāng)函數(shù)f(x)=x+$\frac{1}{x-1}$,(x>1)取得最小值時(shí),相應(yīng)的自變量x等于( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,在同一平面內(nèi),點(diǎn)A位于兩平行直線m,n的同側(cè),且A到m,n的距離分別為1,3.點(diǎn)B、C分別在m、n上,$|{\overrightarrow{AB}+\overrightarrow{AC}}|=5$,則$\overrightarrow{AB}•\overrightarrow{AC}$的最大值是$\frac{21}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知x,y∈{1,2,3,4,5,6},且x+y=7,則$y≥\frac{x}{2}$的概率( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.執(zhí)行如圖所示的程序框圖,若輸入x的值為-5,則輸出y的值是( 。
A.-1B.1C.2D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.為比較甲、乙兩地某月11時(shí)的氣溫情況,隨機(jī)選取該月中的5天中11時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:
①甲地該月11時(shí)的平均氣溫低于乙地該月11時(shí)的平均氣溫
②甲地該月11時(shí)的平均氣溫高于乙地該月11時(shí)的平均氣溫
③甲地該月11時(shí)的氣溫的標(biāo)準(zhǔn)差小于乙地該月11時(shí)的氣溫的標(biāo)準(zhǔn)差
④甲地該月11時(shí)的氣溫的標(biāo)準(zhǔn)差大于乙地該月11時(shí)的氣溫的標(biāo)準(zhǔn)差
其中根據(jù)莖葉圖能得到的正確結(jié)論的編號(hào)為(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若f(x)是定義在(-∞,+∞)上的偶函數(shù),?x1,x2∈[0,+∞)(x1≠x2),有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}<0$,則( 。
A.f(3)<f(1)<f(-2)B.f(1)<f(-1)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(-2)<f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$\overrightarrow{a}$,$\overrightarrow$為兩個(gè)非零向量,設(shè)命題p:|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$||$\overrightarrow$|,命題q:$\overrightarrow{a}$與$\overrightarrow$共線,則命題p是命題q成立的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求定積分${∫}_{0}^{\frac{π}{2}}$($\frac{1}{2}$+cos2$\frac{x}{2}$)dx的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案