12.4月份,有一款服裝投入某商場銷售,4月1日該款服裝僅售出10件,而后,每天銷售的件數(shù)分別遞增25件,到12日銷售量最大后,每天銷售的件數(shù)分別遞減15件,問到月底共售出多少件?

分析 設(shè)4月n日售出的服裝件數(shù)為an,討論當1≤n≤12時,當13≤n≤29時,運用等差數(shù)列的通項公式得到通項;運用等差數(shù)列的前n項和,計算即可得到所求.

解答 解:當1≤n≤12時,銷售的件數(shù)為公差25的等差數(shù)列,
即有an=10+25(n-1)=25n-15;
當13≤n≤29時,銷售的件數(shù)為公差-15的等差數(shù)列,
由a12=25×12-15=285,
an=275-15(n-12)=95-15n,
當1≤n≤12時,前12項的和為12×10+$\frac{1}{2}$×12×11×25=1770,
當13≤n≤29時,前17項的和為17×285-$\frac{1}{2}$×17×16×15=1805,
則四月份的總銷售量為1770+1805=3575件.

點評 本題考查等差數(shù)列的通項和前n項和的應(yīng)用,考查分析問題解決問題的能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.設(shè)Sn是等差數(shù)列的前n項和,若$\frac{{S}_{3}}{{S}_{6}}$=$\frac{1}{3}$,則$\frac{{S}_{6}}{{S}_{9}}$=( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,側(cè)面PBC⊥底面ABCD,點M在AB上,且AM:MB=1:2,E為PB的中點.
(1)求證:CE∥平面ADP;
(2)求證:平面PAD⊥平面PAB;
(3)棱AP上是否存在一點N,使得平面DMN⊥平面ABCD,若存在,求出$\frac{AN}{NP}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=3sinωx(ω>0)在區(qū)間[-$\frac{π}{5}$,-$\frac{π}{3}$]上的最小值是-3,則ω的最小值等于( 。
A.$\frac{9}{2}$B.$\frac{3}{2}$C.3D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=sin(2x-$\frac{π}{3}$),x∈R.求:
(1)函數(shù)f(x)在區(qū)間[0,π)內(nèi)的一條對稱軸;
(2)函數(shù)f(x)在區(qū)間[$\frac{π}{6}$,$\frac{2π}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.函數(shù)f(x)為定義在R上的奇函數(shù),當x≥0時,f(x)=2x+log2(x+1)+a(a∈R),則f(-1)的值為(  )
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.化簡求值:
(1)${π^0}-{(\sqrt{8})^{\frac{2}{3}}}+{0.0081^{\frac{1}{4}}}+\sqrt{2}•\root{3}{2}•\root{6}{2}$.
(2)(lg5)2+lg2•lg50+e2ln2+log28.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.求下列函數(shù)的定義域和值域.
(1)y=f(x)=log3(x2-3x-4);
(2)y=log3(x2+4x+7).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.在-180°~360°范圍內(nèi),與2000°角終邊相同的角為200°和-160°.

查看答案和解析>>

同步練習冊答案