4.化簡(jiǎn)求值:
(1)${π^0}-{(\sqrt{8})^{\frac{2}{3}}}+{0.0081^{\frac{1}{4}}}+\sqrt{2}•\root{3}{2}•\root{6}{2}$.
(2)(lg5)2+lg2•lg50+e2ln2+log28.

分析 (1)直接利用有理指數(shù)冪的運(yùn)算法則化簡(jiǎn)求解即可.
(2)直接利用對(duì)數(shù)運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:(1)${π^0}-{(\sqrt{8})^{\frac{2}{3}}}+{0.0081^{\frac{1}{4}}}+\sqrt{2}•\root{3}{2}•\root{6}{2}$
=1-2+0.3+${2}^{\frac{1}{2}+\frac{1}{3}+\frac{1}{6}}$
=1.3.
(2)(lg5)2+lg2•lg50+e2ln2+log28
=(lg5)2+lg2•lg5+lg2+4+3
=lg5+lg2+7
=8.

點(diǎn)評(píng) 本題考查有理指數(shù)冪的運(yùn)算法則以及對(duì)數(shù)運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知命題P:|1-a|<6,命題Q:{x|x2+(a+2)x+1=0}∩R+=∅.命題P真Q假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.ABCD矩形,AB=2,AD=4,M為AD中點(diǎn).F在線段MD上動(dòng),將△ABF沿BF折起,使A在面BCDF內(nèi)射影O在BC上,BO=t.則t∈[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.4月份,有一款服裝投入某商場(chǎng)銷售,4月1日該款服裝僅售出10件,而后,每天銷售的件數(shù)分別遞增25件,到12日銷售量最大后,每天銷售的件數(shù)分別遞減15件,問到月底共售出多少件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將x1,x2,…,xn中的最小數(shù)記為min{x1,x2…,xn},最大數(shù)記為max{x1,x2…,xn},則max{min{x2-4x+4,2x-1,-x+8}}(x∈R)的值為( 。
A.1B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)計(jì)算:${2^{{{log}_2}}}^{\frac{1}{4}}-{({\frac{8}{27}})^{-\frac{2}{3}}}+lg\frac{1}{100}+{(\sqrt{2}-1)^{lg1}}$
(2)已知角α頂點(diǎn)在原點(diǎn),始邊與x軸非負(fù)半軸重合,終邊在函數(shù)y=-3x(x≤0)的圖象上.求$\frac{4sinα-2cosα}{3sinα+5cosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.圓心為(1,1)且在直線x+y=4上截得的弦長(zhǎng)為2$\sqrt{2}$的圓的方程是( 。
A.(x-1)2+(y-1)2=10B.(x-1)2+(y-1)2=20C.(x-1)2+(y-1)2=2D.(x-1)2+(y-1)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列函數(shù)的周期:
(1)y=sin3x,x∈R;
(2)y=3sin$\frac{x}{4}$,x∈R;
(3)y=2sin(2x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.通過計(jì)算可得下列等式:
23-13=3×12+3×1+1;
33-23=3×22+3×2+1;
43-33=3×32+3×3+1;

(n+1)3-n3=3×n2+3×n+1.
將以上各等式兩邊分別相加,得
(n+1)3-13=3(12+22+…+n2)+3(1+2+3+…+n)+n;
即12+22+32+…+n2=$\frac{1}{6}$n(n+1)(2n+1).
類比上述求法,請(qǐng)你求出13+23+33+…+n3的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案