【題目】已知函數(shù)f(x)=sinx﹣x,若f(cos2θ+2msinθ)+f(﹣2﹣2m)>0對(duì)任意的θ∈(0, )恒成立,則實(shí)數(shù)m的取值范圍為

【答案】[﹣ ,+∞)
【解析】解:由f(x)=sinx﹣x可知,f(x)定義域?yàn)镽,且為奇函數(shù);
∵f'(x)=cosx﹣1≤0,則f(x)在R上單調(diào)遞減;
f(cos2θ+2msinθ)+f(﹣2﹣2m)>0 即:f(cos2θ+2msinθ)>f(2m+2);
根據(jù)函數(shù)單調(diào)性有:cos2θ+2msinθ<2m+2 ①;
sinθ=t∈(0,1),1﹣t>0,①式則:1﹣t2+2mt<2m+2;
﹣1﹣t2<2m(1﹣t);
m> =﹣ [(1﹣t)+ ﹣2]
∵u=(1﹣t)+ ﹣2 在(0,1)上單調(diào)遞減,u(0)=1
∴m
所以答案是:[﹣ ,+∞)
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直四棱柱ABCDA1B1C1D1中,底面ABCD為等腰梯形,ABCD,AB4BCCD2,AA12,EE1分別是棱AD,AA1的中點(diǎn)

1設(shè)F是棱AB的中點(diǎn),證明:直線EE1平面FCC1;

2證明:平面D1AC平面BB1C1C

3求點(diǎn)D到平面D1AC的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖所示的程序框圖,若輸入a的值為 ,則輸出的k值是(

A.9
B.10
C.11
D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓O是△ABC的外接圓,AB=BC,AD是 BC邊上的高,AE 是圓O的直徑,過點(diǎn)C作圓O的切線交BA的延長線于點(diǎn)F.

(1)求證:ACBC=ADAE;
(2)若AF=2,CF=2 ,求AE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lnx﹣ ax2﹣bx,若x=1是f(x)的極大值點(diǎn),則a的取值范圍為(
A.(﹣1,0)
B.(﹣1,+∞)
C.(0,+∞)
D.(﹣∞,﹣1)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,側(cè)棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB的中點(diǎn).

(1)求證:AM∥平面PCD;
(2)設(shè)點(diǎn)N是線段CD上的一動(dòng)點(diǎn),當(dāng)點(diǎn)N在何處時(shí),直線MN與平面PAB所成的角最大?并求出最大角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=x2的圖象在點(diǎn)(x0 , x02)處的切線為l,若l也與函數(shù)y=lnx,x∈(0,1)的圖象相切,則x0必滿足(
A.0<x0
B. <x0<1
C. <x0
D. <x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
(1)求圓C的普通方程和直線l的直角坐標(biāo)方程;
(2)設(shè)M是直線l上任意一點(diǎn),過M做圓C切線,切點(diǎn)為A、B,求四邊形AMBC面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,F(xiàn)是橢圓P: (a>b>0)的右焦點(diǎn),已知A(0,﹣2)與橢圓左頂點(diǎn)關(guān)于直線y=x對(duì)稱,且直線AF的斜率為 ,
(1)求橢圓P的方程;
(2)過點(diǎn)Q(﹣1,0)的直線l交橢圓P于M、N兩點(diǎn),交直線x=﹣4于點(diǎn)E, = , = ,證明:λ+μ為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案