分析 (Ⅰ)利用f(-1)=kf(1),由 f(0.5)=k f(2.5),得到f(2.5)=$\frac{1}{k}$f(0.5)=$\frac{1}{k}$(0.5-2)•0.5.
(Ⅱ)條件可得f(x)=$\frac{1}{k}$f(x-2),當-2≤x<0時,-3≤x<-2時,分別求出f(x)的解析式,從而得到f(x)在[-3,3]上的表達式,通過表達式研究單調性.
(Ⅲ)由(Ⅱ)中函數f(x)在[-3,3]上的單調性可知,在x=-3或x=1處取最小值,在x=-1或x=3處取最大值.
解答 解:(Ⅰ)∵在區(qū)間[0,2]上有f(x)=x(x-2),∴f(1)=-1.
∵f(x)=kf(x+2),∴f(x+2)=$\frac{f(x)}{k}$,即f(x)=$\frac{1}{k}$f(x-2).
∴f(2.5)=f(2+0.5)=$\frac{1}{k}$•f(0.5)=$\frac{1}{k}$•(-$\frac{3}{4}$)=-$\frac{3}{4k}$.
(Ⅱ)當-2≤x<0時,0≤x+2<2,f(x)=kf(x+2)=kx(x+2);
當-3≤x<-2時,1≤x+4<2,f(x)=kf(x+2)=k2 •f(x+4)=(x+4)(x+2).
當2≤x≤3 時,0≤x-2≤1,f(x-2)=kf(x)=(x-2)(x-4),故f(x)=$\frac{1}{k}$(x-2)(x-4).
綜上可得,f(x)=$\left\{\begin{array}{l}{{k}^{2}(x+2)(x+4),-3≤x<-2}\\{kx(x+2),-2≤x<0}\\{x(x-2),0≤x<2}\\{\frac{1}{k}(x-2)(x-4),2≤x≤3}\end{array}\right.$.
(Ⅲ)∵k<0,∴f(x)在[-3,-1]與[1,3]上為增函數,在[-1,1]上為減函數,
故f(x)在x=-3或x=1處取最小值為 f(-3)=-k2,或f(1)=-1,
而在x=-1或x=3處取最大值為 f(-1)=-k,或f(3)=-$\frac{1}{k}$,
故有:
①k<-1時,f(x)在x=-3處取最小值f(-3)=-k2,在x=-1處取最大值f(-1)=-k;
②k=-1時,f(x)在x=-3與x=1處取最小值f(-3)=f(1)=-1,在x=-1與x=3處取最大值f(-1)=f(3)=1;
③-1<k<0時,f(x)在x=1處取最小值f(1)=-1,在x=3處取最大值f(3)=-$\frac{1}{k}$.
點評 這是一道求函數解析式的問題,本題較為抽象,在區(qū)間轉化時一定要細心,防止出錯,屬于難題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $-1,\frac{1}{3}$ | B. | $1,\frac{2}{3}$ | C. | $1,\frac{1}{3}$ | D. | $1,\frac{2}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [1,+∞) | B. | (-∞,1] | C. | [-3,+∞) | D. | (-∞,-3] |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1對 | B. | 2對 | C. | 3對 | D. | 4對 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com