13.一幾何體的三視圖是如圖所示的三個(gè)直角邊為2的等腰直角三角形,則該幾何體的表面積為( 。
A.8B.4$\sqrt{3}$+4C.4$\sqrt{2}$+4D.6+2$\sqrt{3}$

分析 由已知中的三視圖可得該幾何體是一個(gè)以俯視圖為底面的三棱錐,計(jì)算出各個(gè)面的面積,可得答案.

解答 解:由已知中的三視圖可得該幾何體是一個(gè)以俯視圖為底面的三棱錐,
其直觀圖如下圖所示:
在邊長(zhǎng)為2的正方體ABCD-A1B1C1D1中:

該幾何體為圖中的四面體D1-B1BC1
表面積S=$\frac{1}{2}$×(2×2+2×2+2×$2\sqrt{2}$+2×$2\sqrt{2}$)=4+4$\sqrt{2}$;
故選C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是由三視圖,求體積和表面積,根據(jù)已知的三視圖,判斷幾何體的形狀是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知空間四面體ABCD的體積是V,點(diǎn)O是空間上的一點(diǎn),且滿足$\overrightarrow{OA}$+($\sqrt{2}$-1)$\overrightarrow{OB}$+sinα$\overrightarrow{OC}$+cosα$\overrightarrow{OD}$=$\overrightarrow{0}$,其中α∈(0,$\frac{π}{2}$),則VO-ACD的最小值為$\frac{2-\sqrt{2}}{4}V$,VO-ABD+VO-ABC的最大值為$\frac{1}{2}V$,VO-BCD的最小值為$\frac{\sqrt{2}}{4}V$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知$sin({65°+α})=\frac{1}{3}$,則cos(25°-α)的值為( 。
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{{2\sqrt{2}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.下列函數(shù)在其定義域上既是奇函數(shù)又是增函數(shù)的是( 。
A.y=x3B.$y=-\frac{1}{x}$C.y=tanxD.$y=\left\{\begin{array}{l}x(x≥0)\\-x(x<0).\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意n∈N*,Sn=(-1)nan+$\frac{1}{{2}^{n}}$+2n-6且(an+1-p)(an-p)<0恒成立,則實(shí)數(shù)p的取值范圍是$({-\frac{7}{4},\frac{23}{4}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知31=3,32=9,33=27…,則32016的個(gè)位數(shù)上數(shù)字為(  )
A.1B.3C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若復(fù)數(shù)z滿足$\frac{z+2i}{z}$=2+3i,其中i為虛數(shù)單位,則z=( 。
A.$\frac{2}{5}$+$\frac{3}{5}$iB.$\frac{3}{5}$+$\frac{2}{5}$iC.$\frac{3}{5}$+$\frac{1}{5}$iD.$\frac{1}{5}$+$\frac{3}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合A={x|2x2-7x+3≤0,x∈R},B={x|0<x≤1}則集合A∩B=( 。
A.$(0,\frac{1}{2}]$B.[1,3]C.$[\frac{1}{2},1]$D.(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=xlnx+a,直線y=x與曲線y=f(x)相切.
(Ⅰ)求a的值;
(Ⅱ)證明:xex-1[f(x)-2]+f(x)≥0.

查看答案和解析>>

同步練習(xí)冊(cè)答案