5.已知(a-bx)5的展開式中第4項(xiàng)的系數(shù)與含x4的系數(shù)分別為-80與80,則(a-bx)5展開式所有項(xiàng)系數(shù)之和為(  )
A.-1B.1C.32D.64

分析 由題意可得ab的方程,解得ab令x=1計(jì)算可得.

解答 解:∵(a-bx)5的展開式中第4項(xiàng)的系數(shù)與含x4的系數(shù)分別為-80與80,
∴${C}_{5}^{3}$a2(-b)3=-80,${C}_{5}^{4}$a(-b)4=80,解得a=1,b=2
∴(a-bx)5=(1-2x)5,令x=1可得(1-2x)5=-1,
∴展開式所有項(xiàng)系數(shù)之和為-1,
故選:A.

點(diǎn)評(píng) 本題考查二項(xiàng)式定理的應(yīng)用,求出系數(shù)ab是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列有關(guān)命題的說法正確的是(  )
A.“f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B.若p:$?{x_0}∈R,x_0^2-{x_0}-1>0$.則¬p:?x∈R,x2-x-1<0
C.若p∧q為假命題,則p,q均為假命題
D.“若$α=\frac{π}{3}$,則$cosα=\frac{1}{2}$”的否命題是“若$α≠\frac{π}{3}$,則$cosα≠\frac{1}{2}$”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)=2\sqrt{3}sinωxcosωx+2{cos^2}ωx(ω>0)$,且f(x)的最小正周期為π.
(Ⅰ)求ω的值及f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個(gè)長度單位后得到函數(shù)g(x)的圖象,求當(dāng)$x∈[0,\frac{π}{2}]$時(shí)g(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某校高一年級(jí)學(xué)生全部參加了體育科目的達(dá)標(biāo)測(cè)試,現(xiàn)從中隨機(jī)抽取40名學(xué)生的測(cè)試成績(jī),整理數(shù)據(jù)并按分?jǐn)?shù)段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]進(jìn)行分組,假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,則得到體育成績(jī)的折線圖(如下).

(1)體育成績(jī)大于或等于70分的學(xué)生常被稱為“體育良好”,已知該校高一年級(jí)有1000名學(xué)生,試估計(jì)高一全校中“體育良好”的學(xué)生人數(shù);
(2)為分析學(xué)生平時(shí)的體育活動(dòng)情況,現(xiàn)從體積成績(jī)?cè)赱60,70)和[80,90)的樣本學(xué)生中隨機(jī)抽取2人,求在抽取的2名學(xué)生中,至少有1人體育成績(jī)?cè)赱60,70)的概率;
(3)假設(shè)甲、乙、丙三人的體育成績(jī)分別為a,b,c,且分別在[70,80),[80,90),[90,100]三組中,其中a,b,c∈N,當(dāng)數(shù)據(jù)a,b,c的方差s2最小時(shí),寫出a,b,c的值.(結(jié)論不要求證明)
(注:s2=$\frac{1}{n}$[(x${\;}_{1}+\overline{x}$)2+(x2-$\overline{x}$)2+…+(x${\;}_{n}-\overline{x}$)2],其中$\overline{x}$為數(shù)據(jù)x1,x2,…,xn的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.命題p:?x0∈R,不等式$cos{x_0}+{e^{x_0}}-1<0$成立,則p的否定為( 。
A.?x0∈R,不等式$cos{x_0}+{e^{x_0}}-1≥0$成立
B.?x∈R,不等式cosx+ex-1<0成立
C.?x∈R,不等式cosx+ex-1≥0成立
D.?x∈R,不等式cosx+ex-1>0成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)$f(x)=sin(ln\frac{x-1}{x+1})$的圖象大致為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知復(fù)數(shù)z1、z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)分別為A(1,-1)、B(3,1),則$\frac{z_2}{z_1}$=(  )
A.1+2iB.2+iC.1+3iD.3+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{1}{3}$,且過點(diǎn)N($\frac{3\sqrt{2}}{2}$,2).
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)若點(diǎn)M是以橢圓短軸為直徑的圓在第一象限內(nèi)的一點(diǎn),過點(diǎn)M作該圓的切線交橢圓于P,Q兩點(diǎn),橢圓的右焦點(diǎn)為F2,求|PF2|+|PM|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)f(x)在[1,+∞)上為增函數(shù),f(3)=0,且g(x)=f(x+1)為偶函數(shù),則不等式g(2-2x)<0的解集為(0,2).

查看答案和解析>>

同步練習(xí)冊(cè)答案