17.已知復(fù)數(shù)z1、z2在復(fù)平面內(nèi)對應(yīng)的點(diǎn)分別為A(1,-1)、B(3,1),則$\frac{z_2}{z_1}$=( 。
A.1+2iB.2+iC.1+3iD.3+i

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡復(fù)數(shù)$\frac{z_2}{z_1}$=$\frac{3+i}{1-i}$,則答案可求.

解答 解:復(fù)數(shù)z1、z2在復(fù)平面上對應(yīng)的點(diǎn)分別為A(1,-1)、B(3,1),
則$\frac{z_2}{z_1}$=$\frac{3+i}{1-i}$=$\frac{(3+i)(1+i)}{(1-i)(1+i)}=\frac{2+4i}{2}=1+2i$.
故選:A.

點(diǎn)評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2ex-(x-a)2+3,g(x)=f′(x).
(Ⅰ)當(dāng)a為何值時(shí),x軸是曲線y=g(x)的切線?
(Ⅱ)當(dāng)a<-1時(shí),證明:g(x)在[0,+∞)有唯一零點(diǎn);
(Ⅲ)當(dāng)x≥0時(shí),f(x)≥0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)復(fù)數(shù)z滿足(1+i)z=2i,則z的共軛復(fù)數(shù)$\overline{z}$=( 。
A.-1-iB.-1-iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知(a-bx)5的展開式中第4項(xiàng)的系數(shù)與含x4的系數(shù)分別為-80與80,則(a-bx)5展開式所有項(xiàng)系數(shù)之和為( 。
A.-1B.1C.32D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知x,y滿足$\left\{\begin{array}{l}x+2y-3≤0\\ x+3y-3≥0\\ y≤1\end{array}\right.$,z=2x+y的最大值為m,若正數(shù)a,b滿足a+b=m,則$\frac{1}{a}+\frac{4}$的最小值為( 。
A.3B.$\frac{3}{2}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an-a1,且a1,a2+1,a3成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列$\{\frac{1}{a_n}\}$的前n項(xiàng)和Tn,求使得$|{T_n}-1|<\frac{1}{2016}$成立的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)左、右焦點(diǎn)分別為F1,F(xiàn)2點(diǎn)P在雙曲線的右支上,且|PF1|=λ|PF2|(λ>1),$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,雙曲線的離心率為$\sqrt{2}$,則λ=2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=(1+$\sqrt{3}$tanx)cosx.
(1)求函數(shù)f(x)的最小正周期;
(2)若f(θ)=$\frac{1}{2}$,θ∈(-$\frac{π}{6}$,$\frac{π}{3}$),求sinθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知tanα、cotα是關(guān)于x的方程2x2-2kx=3-k2的兩個(gè)方程根,π<α<$\frac{5}{4}$π,求cosα-sinα.

查看答案和解析>>

同步練習(xí)冊答案