數(shù)列{
2
n(n+1)
}的前n項和為Sn,已知Sn=
9
5
,則n值是
 
考點:數(shù)列的求和
專題:計算題
分析:由于an=
2
n(n+1)
=2•(
1
n
-
1
n+1
),再運用累加法,裂相消法,即可求和,再由已知Sn=
9
5
,即可得到n.
解答: 解:∵an=
2
n(n+1)
=2•(
1
n
-
1
n+1

∴Sn=a1+a2+a3+…+an=2•[(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1
)]
=2•(1-
1
n+1
).
∵Sn=
9
5
,即2•(1-
1
n+1
)=
9
5
,
1
n+1
=
1
10

∴n=9.
故答案為:9.
點評:本題考查數(shù)列的求和方法:裂項相消求和.注意運用
1
n(n+1)
=
1
n
-
1
n+1
,是解題的關(guān)鍵,同時考查運算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知
a
=(2,-1),
b
=(x,2),
c
=(-3,y),且
a
b
c
,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l的參數(shù)方程為
x=1-2t
y=t
,曲線C的參數(shù)方程為
x=cosθ
y=
3
sinθ
(θ為參數(shù)).
(1)將直線l與曲線C的參數(shù)方程化為一般方程;
(2)若已知P(x,y)是曲線C上的一點,求x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={a,b,c},B={-2,0,2},映射f從A到B的映射滿足f(a)=f(b)=f(c),那么映射f的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1-tanθ
1+tanθ
=3+2
2
,θ∈(0,π),則
(sinθ+cosθ)-1
cotθ-sinθ•cosθ
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知sinA+cosA=
2
.則角sinA=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合A={-1,0,1},B={1,3},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,且直線PA⊥平面ABCD.過直線BD且垂直于直線PC的平面交PC于點E,當三棱錐E-BCD的體積取到最大值時,側(cè)棱PA的長度為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

假設(shè)某設(shè)備的使用年限x和所支出的維修費用y呈線性相關(guān)關(guān)系,且有如下的統(tǒng)計資料:
使用年限x23456
維修費用y2.23.85.56.57
則x和y之間的線性回歸方程為( 。
A、y=1.23x+0.08
B、y=2x-1.8
C、y=x+1.5
D、y=2.04x-0.57

查看答案和解析>>

同步練習冊答案