已知x,y滿足約束條件
x-y≤0
x+y-1≥0
x-2y+2≥0
,則z=x+
1
2
y的最小值為( 。
A、
1
2
B、
3
4
C、1
D、3
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=x+
1
2
y得y=-2x+2z,
平移直線y=-2x+2z,由圖象可知當(dāng)直線y=-2x+2z經(jīng)過點A時,
直線y=-2x+2z的截距最小,此時z最小,
x+y-1=0
x-2y+2=0
,解得
x=0
y=1
,
即A(0,1),即zmin=0+
1
2
=
1
2

故選:A.
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2為橢圓
x2
9
+
y2
4
=1
的兩個焦點,P為橢圓上一點,已知P、F1、F2是一個直角三角形的三個頂點,且|PF1|>|PF2|,則
|PF1|
|PF2|
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對邊的長為a,b,c.若tan
A+B
2
=sinC
,則下列命題正確的是
 
.(寫出所有正確命題的序號)
①sin2A+sin2B=tanAtanB;  ②acosB+bcosA=c;  ③acosA=bcosB;
④acosB≤bcosA;   ⑤c<a+b≤
2
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,則
3-i
1+i
=( 。
A、2+iB、2-i
C、1+2iD、1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

離心率為
1
2
的橢圓C1與雙曲線C2有相同的焦點,且橢圓長軸的端點、短軸的端點、焦點到雙曲線的一條漸近線的距離依次構(gòu)成等差數(shù)列,則雙曲線C2的離心率等于(  )
A、
15
3
B、
15
5
C、
21
3
D、
21
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|(x-1)(2x-3)≤1},B={x|-1<x<
3
2
}
,則A∩B為(  )
A、{x|
1
2
<x≤
3
2
}
B、{x|1<x≤
3
2
}
C、{x|
1
2
≤x≤
3
2
}
D、{x|
1
2
≤x<
3
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若m∈(0,3),則直線(m+2)x+(3-m)y-3=0與x軸、y軸圍成的三角形的面積小于
9
8
的概率是( 。
A、
1
3
B、
1
2
C、
2
3
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(x,y)位于曲線y=2|x|與y=2所圍成的封閉區(qū)域,則2x-y的最小值為( 。
A、-4B、-6C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(
π
3
+x)cos(
π
3
-x)+
3
sinxcosx+
1
4

(Ⅰ)求函數(shù)f(x)的最小正周期和最大值;
(Ⅱ)若f(θ+
π
12
)
=
1
3
,θ∈(
π
4
,
π
2
)
,求sin2θ的值.

查看答案和解析>>

同步練習(xí)冊答案