分析 由題意畫出圖形,聯(lián)立直線和圓的方程,利用弦長公式求得AB,再利用數(shù)量積的幾何意義求得$\overrightarrow{AC}$•$\overrightarrow{AB}$.
解答 解:如圖,
聯(lián)立$\left\{\begin{array}{l}{x-y+2=0}\\{(x+2)^{2}+(y-1)^{2}=4}\end{array}\right.$,得2x2+6x+1=0.
設(shè)A(x1,y1),B(x2,y2),
則${x}_{1}+{x}_{2}=-3,{x}_{1}{x}_{2}=\frac{1}{2}$.
∴AB=$\sqrt{1+{k}^{2}}|{x}_{1}-{x}_{2}|$=$\sqrt{1+1}•\sqrt{(-3)^{2}-4×\frac{1}{2}}=\sqrt{14}$.
由數(shù)量積的幾何意義可得:$\overrightarrow{AC}$•$\overrightarrow{AB}$=$|\overrightarrow{AB}|•\frac{1}{2}|\overrightarrow{AB}|=\frac{1}{2}|\overrightarrow{AB}{|}^{2}=\frac{14}{2}=7$.
故答案為:7.
點評 本題考查直線和圓相交的性質(zhì),考查了弦長公式的應(yīng)用,考查了平面向量數(shù)量積的幾何意義,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 14 | C. | 12 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 14 | C. | 12 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | c<a<b | C. | b<c<a | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com