分析 利用兩角和的余弦展開,令t=cosx-sinx換元,轉(zhuǎn)化為二次函數(shù)求最值解答.
解答 解:f(x)=sin2x+$\sqrt{2}cos(x+\frac{π}{4})$=sin2x+$\sqrt{2}(cosxcos\frac{π}{4}-sinxsin\frac{π}{4})$
=sin2x+$\sqrt{2}(\frac{\sqrt{2}}{2}cosx-\frac{\sqrt{2}}{2}sin2x)$=2sinxcosx+cosx-sinx.
令t=cosx-sinx,則t∈[$-\sqrt{2},\sqrt{2}$],
∴t2=1-2sinxcosx,2sinxcosx=1-t2.
原函數(shù)化為y=-t2+t+1,t∈[$-\sqrt{2},\sqrt{2}$],
對(duì)稱軸方程為t=$\frac{1}{2}$,∴當(dāng)t=$\frac{1}{2}$時(shí)函數(shù)有最大值為$\frac{5}{4}$.
故答案為:$\frac{5}{4}$.
點(diǎn)評(píng) 本題考查了兩角和與差的余弦函數(shù),考查了利用換元法求三角函數(shù)的最值,考查了二次函數(shù)最值的求法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 3 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x2-y2=4 | B. | $\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{4}$=1 | C. | $\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{4}$=1 | D. | x2-y2=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{5}{2}$ | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com