2.設(shè)橢圓的一個(gè)焦點(diǎn)與拋物線x2=8y的焦點(diǎn)相同,離心率為$\frac{1}{2}$,則此橢圓的標(biāo)準(zhǔn)方程為(  )
A.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1C.$\frac{{x}^{2}}{48}$+$\frac{{y}^{2}}{64}$=1D.$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{48}$=1

分析 拋物線x2=8y的焦點(diǎn)為(0,2).可設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}$=1(a>b>0),c=2.又$\frac{c}{a}=\frac{1}{2}$,a2=b2+c2,解出即可得出.

解答 解:拋物線x2=8y的焦點(diǎn)為(0,2).
可設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}$=1(a>b>0),
∴c=2.
又$\frac{c}{a}=\frac{1}{2}$,a2=b2+c2,
解得a=4,b2123.
∴橢圓的標(biāo)準(zhǔn)方程為:$\frac{{y}^{2}}{16}+\frac{{x}^{2}}{12}=1$.
故選:A.

點(diǎn)評 本題考查了橢圓與拋物線的標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知方程$\frac{{x}^{2}}{1+k}$+$\frac{{y}^{2}}{1-k}$=1(k<-1)表示雙曲線,則雙曲線的焦點(diǎn)坐標(biāo)是( 。
A.(0,$±\sqrt{k}$)B.(0,$±\sqrt{2k}$)C.(0,$±\sqrt{-k}$)D.(0,$±\sqrt{-2k}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求下列函數(shù)的值域.
①f(x)=($\frac{1}{3}$)${\;}^{{x}^{2}+3x-\frac{1}{4}}$;
②f(x)=$\sqrt{1-(\frac{1}{2})^{x}}$;
③f(x)=4x-3•2x+1,x∈[-1,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.(${x}^{\frac{1}{2}}$一2${y}^{\frac{1}{2}}$)(${x}^{\frac{1}{2}}$+2${y}^{\frac{1}{2}}$)(x+4y)等于x2-16y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知sinα=$\frac{5}{13}$,且α為第一象限的角,求sin2α和cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為$\sqrt{3}$,過點(diǎn)(-1,0)且斜率為1的直線l與橢圓交于不同的兩點(diǎn)A,B.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求弦|AB|的中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知圓C:x2+y2=1與x軸的兩個(gè)交點(diǎn)分別為A,B(由左到右),P為C上的動(dòng)點(diǎn),l過點(diǎn)P且與C相切,過點(diǎn)A作l的垂線且與直線BP交于點(diǎn)M,則點(diǎn)M到直線x+2y-9=0的距離的最大值是$2\sqrt{5}+2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)$f(x)=\frac{x}{{({2x+1})({2x-a})}}$為奇函數(shù),則a=( 。
A.1B.2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若橢圓$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{m}$=1的離心率為$\frac{1}{2}$,則m=( 。
A.$\frac{9}{4}$B.4C.$\frac{9}{4}$或4D.$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊答案