14.已知圓C:x2+y2=1與x軸的兩個(gè)交點(diǎn)分別為A,B(由左到右),P為C上的動(dòng)點(diǎn),l過點(diǎn)P且與C相切,過點(diǎn)A作l的垂線且與直線BP交于點(diǎn)M,則點(diǎn)M到直線x+2y-9=0的距離的最大值是$2\sqrt{5}+2$.

分析 先利用交軌法求出M的軌跡是以(-1,0)為圓心,2為半徑的圓,再利用圓心到直線的距離公式,即可得出結(jié)論.

解答 解:設(shè)P(a,b),則l的方程為ax+by=1,
∴AM的方程為bx-ay+b=0,BP的方程為bx-(a-1)y-b=0,
聯(lián)立,可得M(2a-1,2b),
即x=2a-1,y=2b,
∴a=$\frac{x+1}{2}$,b=$\frac{y}{2}$,
∵a2+b2=1,
∴(x+1)2+y2=4,即M的軌跡是以(-1,0)為圓心,2為半徑的圓,
圓心到直線x+2y-9=0的距離d=$\frac{|-1-9|}{\sqrt{5}}$=2$\sqrt{5}$,
∴點(diǎn)M到直線x+2y-9=0的距離的最大值是$2\sqrt{5}+2$.
故答案為:$2\sqrt{5}+2$.

點(diǎn)評(píng) 本題考查軌跡方程,考查點(diǎn)到直線的距離公式,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)α是第三象限,cos(α+β)cosβ+sin(α+β)sinβ=-$\frac{3}{5}$,則tan$\frac{α}{2}$=( 。
A.-3B.-2C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知i為虛數(shù)單位,復(fù)數(shù)z=$\frac{i-{i}^{2016}}{{i}^{2017}}$對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)橢圓的一個(gè)焦點(diǎn)與拋物線x2=8y的焦點(diǎn)相同,離心率為$\frac{1}{2}$,則此橢圓的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1C.$\frac{{x}^{2}}{48}$+$\frac{{y}^{2}}{64}$=1D.$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{48}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.①y=tan x在其定義域內(nèi)為增函數(shù);
②函數(shù)$y=2sin(2x+\frac{π}{3})$的圖象關(guān)于點(diǎn)$(\frac{π}{12},0)$對(duì)稱;
③把函數(shù)$y=3sin({2x+\frac{π}{3}})$的圖象向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度得到函數(shù)y=3sin 2x的圖象;
④若α、β是第一象限的角,且α>β,則sinα>sinβ.
⑤函數(shù)y=ln|x-1|的圖象與函數(shù)y=-2osπx(-2≤x≤4)的圖象所有交點(diǎn)的橫坐標(biāo)之和等于6.
其中正確的說法是③⑤.(寫出所有正確說法的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)$f(x)={log_{a+2}}(a{x^2}-3x+2)$的值域?yàn)镽,則a的取值范圍是$[0,\frac{9}{8}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(x)=ax.(a>0,a≠1),若f(x)在[-2,2]的最大值為16,則a=4或$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線l:x-y+2=0過橢圓的左焦點(diǎn)F1和一個(gè)頂點(diǎn)B,該橢圓的離心率為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知中心在原點(diǎn)的橢圓C的一個(gè)焦點(diǎn)為F(0,1),離心率為$\frac{1}{2}$,則橢圓C的標(biāo)準(zhǔn)方程為$\frac{y^2}{4}+\frac{x^2}{3}=1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案