分析 由題意,求出cosα的值,再計算sin2α和cos2α的值.
解答 解:∵sinα=$\frac{5}{13}$,且α為第一象限的角,
∴cosα=$\sqrt{1{-sin}^{2}α}$=$\sqrt{1{-(\frac{5}{13})}^{2}}$=$\frac{12}{13}$,
∴sin2α=2sinαcosα=2×$\frac{5}{13}$×$\frac{12}{13}$=$\frac{120}{169}$,
cos2α=cos2α-sin2α=${(\frac{12}{13})}^{2}$-${(\frac{5}{13})}^{2}$=$\frac{119}{169}$.
點評 本題考查了三角函數(shù)公式的簡單應用問題,是基礎題目.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,+∞) | B. | (0,+∞) | C. | (-2,+∞) | D. | [-2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1 | B. | $\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1 | C. | $\frac{{x}^{2}}{48}$+$\frac{{y}^{2}}{64}$=1 | D. | $\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{48}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com