【題目】已知函數(shù).
(Ⅰ)若函數(shù)在上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)若,對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ);(Ⅱ).
【解析】
(Ⅰ)將問(wèn)題轉(zhuǎn)化為對(duì)恒成立,然后利用參變量分離法得出,于是可得出實(shí)數(shù)的取值范圍;
(Ⅱ)由(Ⅰ)知,函數(shù)在上是增函數(shù),設(shè),并設(shè)
,得知在區(qū)間上為減函數(shù),轉(zhuǎn)化為在上恒成立,利用參變量分離法得到,然后利用導(dǎo)數(shù)求出函數(shù)在上的最大值可求出實(shí)數(shù)的取值范圍。
(Ⅰ)易知不是常值函數(shù),∵在上是增函數(shù),
∴恒成立,所以,只需;
(Ⅱ)因?yàn)?/span>,由(Ⅰ)知,函數(shù)在上單調(diào)遞增,
不妨設(shè),
則,可化為,
設(shè),則,
所以為上的減函數(shù),即在上恒成立,
等價(jià)于在上恒成立,
設(shè),所以,
因,所以,所以函數(shù)在上是增函數(shù),
所以(當(dāng)且僅當(dāng)時(shí)等號(hào)成立).
所以.即的最小值為12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),若,且在上恒成立,求的取值范圍;
(3)設(shè)函數(shù),若,且在上存在零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與體育鍛煉時(shí)間的關(guān)系,對(duì)該校300名高三學(xué)生平均每天體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘).
平均每天鍛煉的時(shí)間/分鐘 | ||||||
總?cè)藬?shù) | 34 | 51 | 59 | 66 | 65 | 25 |
將學(xué)生日均體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“鍛煉達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表;
鍛煉不達(dá)標(biāo) | 鍛煉達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 40 | 160 | |
合計(jì) |
(2)通過(guò)計(jì)算判斷,是否能在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“鍛煉達(dá)標(biāo)”與性別有關(guān)?
參考公式:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若不等式時(shí)恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一某班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖因事故都受到不同程度的損壞,但可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:
(1)求分?jǐn)?shù)在[50,60)的頻率及全班人數(shù);
(2)求分?jǐn)?shù)在[80,90)的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間的矩形的高;
(3)若規(guī)定:90分(包含90分)以上為優(yōu)秀,現(xiàn)從分?jǐn)?shù)在80分(包含80分)以上的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中至少有一份優(yōu)秀的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知焦點(diǎn)在軸上的拋物線過(guò)點(diǎn),橢圓的兩個(gè)焦點(diǎn)分別為,,其中與的焦點(diǎn)重合,過(guò)點(diǎn)與的長(zhǎng)軸垂直的直線交于,兩點(diǎn),且,曲線是以坐標(biāo)原點(diǎn)為圓心,以為半徑的圓.
(1)求與的標(biāo)準(zhǔn)方程;
(2)若動(dòng)直線與相切,且與交于,兩點(diǎn),求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“2019年”是一個(gè)重要的時(shí)間節(jié)點(diǎn)——中華人民共和國(guó)成立70周年,和全面建成小康社會(huì)的 關(guān)鍵之年.70年披荊斬棘,70年砥礪奮進(jìn),70年風(fēng)雨兼程,70年滄桑巨變,勤勞勇敢的中國(guó) 人用自己的雙手創(chuàng)造了一項(xiàng)項(xiàng)輝煌的成績(jī),取得了舉世矚目的成就.趁此良機(jī),李明在天貓網(wǎng)店銷售“新中國(guó)成立70周年紀(jì)念冊(cè)”,每本紀(jì)念冊(cè)進(jìn)價(jià)4元,物流費(fèi)、管理費(fèi)共為元/本,預(yù)計(jì)當(dāng)每本紀(jì)念冊(cè)的售價(jià)為元(時(shí),月銷售量為千本.
(I)求月利潤(rùn)(千元)與每本紀(jì)念冊(cè)的售價(jià)X的函數(shù)關(guān)系式,并注明定義域:
(II)當(dāng)為何值時(shí),月利潤(rùn)最大?并求出最大月利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)且
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)定義在R上的函數(shù)滿足,當(dāng)時(shí),。若存在滿足不等式且是函數(shù)的一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com