已知橢圓
x2
2
+y2=1
,則該橢圓的離心率為( 。
A、
1
2
B、
2
2
C、
3
3
D、
2
3
考點:橢圓的簡單性質
專題:圓錐曲線的定義、性質與方程
分析:在橢圓的標準方程中,分別求出a,c,由此能求出該橢圓的離心率.
解答: 解:橢圓
x2
2
+y2=1
中,
∵a=
2
,c=
2-1
=1,
∴該橢圓的離心率e=
c
a
=
1
2
=
2
2

故選:B.
點評:本題考查橢圓的離心率的求法,是基礎題,解題時要認真審題,要熟練掌握橢圓的性質.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

角α與π+α的終邊關于( 。⿲ΨQ.
A、x軸B、y軸
C、原點D、直線y=x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=f(x),(-
a2
2
≤x≤2)
是奇函數(shù),由實a數(shù)的值是( 。
A、-2B、2
C、2或-2D、無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(a+bi)(1+i)=1+2i,其中i為虛數(shù)單位,則實數(shù)a,b滿足條件( 。
A、a=l,b=3
B、a=3,b=l
C、a=
1
2
,b=
3
2
D、a=
3
2
,b=
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α∈(0,
π
4
)
,β∈(0,π),且tan(α-β)=
1
2
,tanβ=-
1
7
,則2α-β的值是(  )
A、
π
4
B、
4
C、-
π
4
D、-
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)是在閉區(qū)間[0,2]上單調遞增的偶函數(shù),設a=f(-2),b=f(0),c=f(-1),則( 。
A、b<c<a
B、a<b<c
C、a<c<b
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P(2,5)與圓x2+y2=24的位置關系是( 。
A、在圓外B、在圓內(nèi)
C、在圓上D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面直角坐標系xoy中,已知A(1,0),B(0,1),C(-1,c)(c>0),且|OC|=2,若
OC
OA
OB
,則實數(shù)λ,μ的值分別是( 。
A、
3
,1
B、1,
3
C、-
3
,1
D、-1,
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),若存在實數(shù)對(a,b),使得f(a+x)•f(a-x)=b對定義域中的每一個x都成立,則稱函數(shù)f(x)是“(a,b)型函數(shù)”.
(1)判斷函數(shù)f1(x)=x是否為“(a,b)型函數(shù)”,并說明理由;
(2)若函數(shù)f2(x)=tanx是“(a,b)型函數(shù)”,求滿足條件的實數(shù)對(a,b)所組成的集合;
(3)已知函數(shù)g(x)是“(a,b)型函數(shù)”,對應的實數(shù)對(a,b)為(1,4).當x∈[0,1]時,g(x)=x2+m(x-1)+1(m>0),若當x∈[0,2]時,都有1≤g(x)≤4,試求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案