7.已知某圓錐體的底面半徑r=3,沿圓錐體的母線把側(cè)面展開(kāi)后得到一個(gè)圓心角為$\frac{2}{3}π$的扇形,則該圓錐體的表面積是36π.

分析 圓錐的底面周長(zhǎng)為側(cè)面展開(kāi)圖的弧長(zhǎng),利用弧長(zhǎng)公式計(jì)算展開(kāi)圖的半徑即圓錐的母線長(zhǎng),代入公式計(jì)算得出面積.

解答 解:圓錐的底面積S=π×32=9π,
圓錐側(cè)面展開(kāi)圖的弧長(zhǎng)為2π×3=6π,
∴圓錐側(cè)面展開(kāi)圖的扇形半徑為$\frac{6π}{\frac{2π}{3}}$=9.
圓錐的側(cè)面積S側(cè)=$\frac{1}{2}×6π×9$=27π.
∴圓錐的表面積S=S+S側(cè)=36π.
故答案為:36π.

點(diǎn)評(píng) 本題考查了圓錐的結(jié)構(gòu)特征,面積計(jì)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知點(diǎn)A(3,6),在x軸上的點(diǎn)P與點(diǎn)A的距離等于10,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.《九章算術(shù)》有這樣一個(gè)問(wèn)題:今有男子善走,日增等里,九日走一千二百六十里,第一日、第四日、第七日所走之和為三百九十里,問(wèn)第八日所走里數(shù)為( 。
A.150B.160C.170D.180

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若l,m,n為空間的三條直線,l⊥m,m⊥n,則l與n的位置關(guān)系為平行或相交或異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.蒙特卡洛方法的思想如下:當(dāng)所求解的問(wèn)題是某種隨機(jī)事件=出現(xiàn)的概率時(shí),通過(guò)某種“試驗(yàn)”方法,以這種事件出現(xiàn)的頻率估計(jì)這一隨機(jī)事件的概率,并將其作為問(wèn)題的解.現(xiàn)為了估計(jì)右圖所示的陰影部分面積的大小,使用蒙特卡洛方法的思想,向面積為16的矩形OABC內(nèi)投擲800個(gè)點(diǎn),其中恰有180個(gè)點(diǎn)落在陰影部分內(nèi),則可估計(jì)陰影部分的面積為( 。
A.3.6B.4C.12.4D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.短軸長(zhǎng)等于8,離心率等于$\frac{3}{5}$的橢圓的標(biāo)準(zhǔn)方程為( 。
A.$\frac{x^2}{100}+\frac{y^2}{64}=1$B.$\frac{x^2}{100}+\frac{y^2}{64}=1$或$\frac{x^2}{64}+\frac{y^2}{100}=1$
C.$\frac{x^2}{25}+\frac{y^2}{16}=1$D.$\frac{x^2}{25}+\frac{y^2}{16}=1$或$\frac{x^2}{16}+\frac{y^2}{25}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如果橢圓的長(zhǎng)軸長(zhǎng)為4,短軸長(zhǎng)為2,則此橢圓的標(biāo)準(zhǔn)方程為( 。
A.$\frac{x^2}{4}+{y^2}$=1B.$\frac{y^2}{4}+{x^2}$=1
C.$\frac{x^2}{4}+{y^2}$=1或$\frac{y^2}{4}+{x^2}$=1D.$\frac{y^2}{4}+\frac{x^2}{2}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{y≤2x}\\{x+y≤1}\\{y+1≥0}\end{array}\right.$,則z=x+3y的最大值是( 。
A.$\frac{4}{3}$B.$\frac{7}{3}$C.-$\frac{1}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{an}的前n項(xiàng)和為Sn=2an-3•2n+4(其中n∈N*
(1)設(shè)bn=$\frac{{a}_{n}}{{2}^{n}}$,證明:數(shù)列{bn}是等差數(shù)列;
(2)設(shè)cn=4n+(-1)n-1•λ•$\frac{2{a}_{n+1}}{3n+2}$(λ為非零整數(shù),n∈N*),試確定λ的值,使得對(duì)任意n∈N*,都有cn+1>cn成立;
(3)設(shè)dn=$\frac{(3n+5)•{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$,數(shù)列{dn}的前n項(xiàng)和為Tn,求證:$\frac{2}{5}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案