7.設(shè)點(diǎn)A,F(xiàn)(c,0)分別是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右頂點(diǎn)、右焦點(diǎn),直線x=$\frac{a^2}{c}$交該雙曲線的一條漸近線于點(diǎn)P,若△PAF是等腰三角形,則此雙曲線的離心率為( 。
A.$\sqrt{3}$B.3C.$\sqrt{2}$D.2

分析 由|PF|>|PA|,|PF|>|AF|,可得△PAF是等腰三角形即有|PA|=|AF|.設(shè)雙曲線的一條漸近線方程為y=$\frac{a}$x,可得A(a,0),P$(\frac{a^2}{c}\;,\;\frac{ab}{c})$,運(yùn)用兩點(diǎn)的距離公式,化簡整理,由a,b,c的關(guān)系和離心率公式,解方程即可得到所求值.

解答 解:顯然|PF|>|PA|,|PF|>|AF|,
所以由△PAF是等腰三角形得|PA|=|AF|.
設(shè)雙曲線的一條漸近線方程為y=$\frac{a}$x,
可得A(a,0),P$(\frac{a^2}{c}\;,\;\frac{ab}{c})$,
可得$\sqrt{(\frac{{a}^{2}}{c}-a)^{2}+(\frac{ab}{c})^{2}}$=c-a,
即有${(\frac{a^2}{c}-a)^2}+{(\frac{ab}{c})^2}={(c-a)^2}$$⇒{(\frac{a}{c})^2}{(a-c)^2}+{(\frac{a}{c})^2}({c^2}-{a^2})={(c-a)^2}$
$⇒{(\frac{a}{c})^2}+{(\frac{a}{c})^2}\frac{c+a}{c-a}=1$$⇒\frac{1}{e^2}+\frac{1}{e^2}\frac{e+1}{e-1}=1$.
化簡為e2-e-2=0,
解得e=2(-1舍去).
故選:D.

點(diǎn)評 本題考查雙曲線的離心率的求法,注意運(yùn)用雙曲線的漸近線方程和等腰三角形的定義,考查化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.與雙曲線$\frac{y^2}{4}-\frac{x^2}{3}=1$共同的漸近線,且過點(diǎn)(-3,2)的雙曲線的標(biāo)準(zhǔn)方程是( 。
A.$\frac{y^2}{8}-\frac{x^2}{6}=1$B.$\frac{x^2}{6}-\frac{y^2}{8}=1$C.$\frac{x^2}{16}-\frac{y^2}{9}=1$D.$\frac{y^2}{9}-\frac{x^2}{16}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.過雙曲線${x}^{2}-\frac{{y}^{2}}{4}=1$的右焦點(diǎn)F作直線l交雙曲線于A?B兩點(diǎn),若|AB|=4,則這樣的直線有(  )
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.雙曲線x2-$\frac{{y}^{2}}{3}$=1的焦點(diǎn)坐標(biāo)為(-2,0),(2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線的一條漸近線方程為y=4x,且雙曲線的焦點(diǎn)與拋物線y2=8x的焦點(diǎn)是重合的,則雙曲線的標(biāo)準(zhǔn)方程為( 。
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{{17{x^2}}}{4}-\frac{{17{y^2}}}{64}=1$
C.$\frac{x^2}{4}-\frac{{4{y^2}}}{5}=1$D.$\frac{x^2}{4}-\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.對于函數(shù)f(x),g(x),記集合Df>g={x|f(x)>g(x)}.
(1)設(shè)f(x)=2|x|,g(x)=x+3,求Df>g;
(2)設(shè)f1(x)=x-1,${f_2}(x)={(\frac{1}{3})^x}+a•{3^x}+1$,h(x)=0,如果${D_{{f_1}>h}}∪{D_{{f_2}>h}}=R$.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,點(diǎn)P在雙曲線的右支上,且|PF1|=4|PF2|,則此雙曲線的離心率e的最大值為(  )
A.$\frac{5}{4}$B.$\frac{6}{5}$C.$\frac{5}{3}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.雙曲線9x2-16y2=-144的實(shí)軸長等于6,其漸近線與圓x2+y2-2x+m=0相切,則m=$\frac{16}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的右焦點(diǎn)為F(c,0),若圓C:(x-c)2+y2=4a2與雙曲線E的漸近線相切,則E的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\frac{\sqrt{3}+1}{2}$C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案