2.已知雙曲線的一條漸近線方程為y=4x,且雙曲線的焦點(diǎn)與拋物線y2=8x的焦點(diǎn)是重合的,則雙曲線的標(biāo)準(zhǔn)方程為(  )
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{{17{x^2}}}{4}-\frac{{17{y^2}}}{64}=1$
C.$\frac{x^2}{4}-\frac{{4{y^2}}}{5}=1$D.$\frac{x^2}{4}-\frac{y^2}{2}=1$

分析 求出拋物線的焦點(diǎn)坐標(biāo),確實(shí)雙曲線的焦點(diǎn)坐標(biāo)和方程,結(jié)合漸近線,利用待定系數(shù)法設(shè)出雙曲線的方程,利用a,b,c的關(guān)系進(jìn)行求解即可.

解答 解:∵雙曲線的焦點(diǎn)與拋物線y2=8x的焦點(diǎn)是重合,
∴拋物線的焦點(diǎn)為(2,0),焦點(diǎn)在x軸上,
∵雙曲線的一條漸近線方程為y=4x,
∴設(shè)雙曲線的方程為x2-$\frac{{y}^{2}}{16}$=λ(λ>0),
即$\frac{{x}^{2}}{λ}-\frac{{y}^{2}}{16λ}$=1,
則a2=λ,b2=16λ,
c2=λ+16λ=17λ=4,
則λ=$\frac{4}{17}$,
則雙曲線的標(biāo)準(zhǔn)方程為$\frac{{17{x^2}}}{4}-\frac{{17{y^2}}}{64}=1$,
故選:B

點(diǎn)評(píng) 本題主要考查雙曲線的方程和性質(zhì),根據(jù)雙曲線和拋物線焦點(diǎn)關(guān)系求出c,以及利用待定系數(shù)法是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,PC⊥AD.底面ABCD為梯形,AB∥DC,AB⊥BC,PA=AB=BC=1.
(1)求證:平面PAB⊥平面PCB;
(2)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AC⊥AD,AB⊥BC,PA=AB=BC=1,AC=AD,點(diǎn)E在棱PB上,且PE=2EB.
(1)PD∥平面EAC.
(2)求平面ACE分四棱錐兩部分E-ABC與PE-ACD的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知拋物線E:x2=8y的焦點(diǎn)F到雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸進(jìn)線的距離為$\frac{4\sqrt{5}}{5}$,且拋物線E上的動(dòng)點(diǎn)M到雙曲線C的右焦點(diǎn)F1(c,0)的距離與直線y=-2的距離之和的最小值為3,則雙曲線C的方程為( 。
A.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$-y2=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1D.$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.不等式$\frac{1}{x}$>1的解集為(  )
A.(-∞,1)B.(0,1)C.(1,+∞)D.(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)點(diǎn)A,F(xiàn)(c,0)分別是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右頂點(diǎn)、右焦點(diǎn),直線x=$\frac{a^2}{c}$交該雙曲線的一條漸近線于點(diǎn)P,若△PAF是等腰三角形,則此雙曲線的離心率為( 。
A.$\sqrt{3}$B.3C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)A(-3,0),B(3,0),若直線y=-$\frac{3\sqrt{5}}{10}$(x-5)上存在一點(diǎn)P滿足|PA|-|PB|=4,則點(diǎn)P到z軸的距離為(  )
A.$\frac{3\sqrt{5}}{4}$B.$\frac{5\sqrt{5}}{3}$C.$\frac{3\sqrt{5}}{4}$或$\frac{3\sqrt{5}}{2}$D.$\frac{5\sqrt{5}}{3}$或$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知F1,F(xiàn)2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),若點(diǎn)F2關(guān)于直線y=$\frac{a}$x的對(duì)稱點(diǎn)M也在雙曲線上,則該雙曲線的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{2}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.用更相減損術(shù)求得81與135的最大公約數(shù)是(  )
A.54B.27C.9D.81

查看答案和解析>>

同步練習(xí)冊(cè)答案