【題目】在平面直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù))以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系.
(1)寫出直線l的普通方程以及曲線C的極坐標(biāo)方程;
(2)若直線l與曲線C的兩個(gè)交點(diǎn)分別為M,N,直線l與x軸的交點(diǎn)為P,求|PM||PN|的值.
【答案】
(1)解:直線l的參數(shù)方程為 (t為參數(shù)),消去參數(shù)t可得:x+y﹣1=0.
曲線C的參數(shù)方程為 (θ為參數(shù)),利用平方關(guān)系可得:x2+(y﹣2)2=4.
把ρ2=x2+y2,y=ρsinθ,可得C的極坐標(biāo)方程為:ρ=4sinθ
(2)解:P(1,0).把直線l的參數(shù)方程代入圓C的方程為: +1=0,
t1+t2=3 ,t1t2=1,
∴|PM||PN|=|t1t2|=1.
【解析】(1)直線l的參數(shù)方程為 (t為參數(shù)),消去參數(shù)t可得普通方程.曲線C的參數(shù)方程為 (θ為參數(shù)),利用平方關(guān)系可得直角坐標(biāo)方程.把ρ2=x2+y2 , y=ρsinθ,可得C的極坐標(biāo)方程.(II)P(1,0).把直線l的參數(shù)方程代入圓C的方程為: +1=0,|PM||PN|=|t1t2|.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若不等式f(x)﹣f(x+m)≤1恒成立,求實(shí)數(shù)m的最大值;
(2)當(dāng)a< 時(shí),函數(shù)g(x)=f(x)+|2x﹣1|有零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識(shí)測(cè)試.
(Ⅰ)根據(jù)題目條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為環(huán)保知識(shí)成績(jī)優(yōu)秀與學(xué)生的文理分類有關(guān).
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計(jì) | |
甲班 | |||
乙班 | 30 | ||
總計(jì) | 60 |
(Ⅱ)現(xiàn)已知A,B,C三人獲得優(yōu)秀的概率分別為 ,設(shè)隨機(jī)變量X表示A,B,C三人中獲得優(yōu)秀的人數(shù),求X的分布列及期望E(X).
附: ,n=a+b+c+d
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,修建一條公路需要一段環(huán)湖彎曲路段與兩條直道平滑連接(相切).已知環(huán)湖彎曲路段為某三次函數(shù)圖像的一部分,則該函數(shù)的解析式為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線上任意一點(diǎn)到直線的距離是它到點(diǎn)的距離的2倍.
(1) 求曲線的方程;
(2) 過(guò)點(diǎn)的直線與曲線交于兩點(diǎn).若是的中點(diǎn),求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓兩焦點(diǎn)分別為是橢圓在第一象限弧上一點(diǎn),并滿足,過(guò)P作傾斜角互補(bǔ)的兩條直線分別交橢圓于兩點(diǎn).
(1)求點(diǎn)坐標(biāo);
(2)求證:直線的斜率為定值;
(3)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,四邊形ABCD中,AB∥CD,AD⊥AB,AB=2CD=4,AD=2,過(guò)點(diǎn)C作CO⊥AB,垂足為O,將△OBC沿CO折起,如圖2使得平面CBO與平面AOCD所成的二面角的大小為θ(0<θ<π),E,F(xiàn)分別為BC,AO的中點(diǎn)
(1)求證:EF∥平面ABD
(2)若θ= ,求二面角F﹣BD﹣O的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線C的頂點(diǎn)在原點(diǎn)O,過(guò)點(diǎn),其焦點(diǎn)F在x軸上.
求拋物線C的標(biāo)準(zhǔn)方程;
斜率為1且與點(diǎn)F的距離為的直線與x軸交于點(diǎn)M,且點(diǎn)M的橫坐標(biāo)大于1,求點(diǎn)M的坐標(biāo);
是否存在過(guò)點(diǎn)M的直線l,使l與C交于P、Q兩點(diǎn),且若存在,求出直線l的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=ex(x2+ax+b)有極值點(diǎn)x1 , x2(x1<x2),且f(x1)=x1 , 則關(guān)于x的方程f2(x)+(2+a)f(x)+a+b=0的不同實(shí)根個(gè)數(shù)為( )
A.0
B.3
C.4
D.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com