15.若函數(shù)f(x)=4sinx+acosx的最大值為5,則常數(shù)a=±3.

分析 利用輔助角公式化簡(jiǎn)函數(shù)f(x)的解析式,再利用正弦函數(shù)的最大值為5,求得a的值.

解答 解:由于函數(shù)f(x)=4sinx+acosx=$\sqrt{16{+a}^{2}}$sin(x+θ),其中,cosθ=$\frac{4}{\sqrt{16{+a}^{2}}}$,sinθ=$\frac{a}{\sqrt{16{+a}^{2}}}$,
故f(x)的最大值為$\sqrt{{16+a}^{2}}$=5,∴a=±3,
故答案為:±3.

點(diǎn)評(píng) 本題主要考查輔助角公式,正弦函數(shù)的值域,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在數(shù)列{an}中,已知a2=1,an+2+(-1)n-1an=2,記Sn是數(shù)列{an}的前n項(xiàng)和,則S80=( 。
A.1640B.1680C.3240D.1600

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.根據(jù)條件,求下列方程的解集:
(1)cos(x+$\frac{π}{4}$)=$\frac{1}{2}$,x∈(0,2π);
(2)3tan(x+$\frac{π}{3}$)=$\sqrt{3}$,x∈(0,π);
(3)2sin2x-1=0,x∈(0,$\frac{π}{2}$);
(4)2sin(5x-$\frac{π}{12}$)-$\sqrt{3}$=0(x為銳角).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知$\overrightarrow{a}$=(-2$\sqrt{3}$,2),$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,且$\overrightarrow{a}$•$\overrightarrow$=-4.
(1)求|$\overrightarrow$|;
(2)若$\overrightarrow{a}$=x$\overrightarrow$+y$\overrightarrow{c}$,$\overrightarrow{a}$⊥$\overrightarrow{c}$,|$\overrightarrow{c}$|=2$\sqrt{2}$,求$\overrightarrow$與$\overrightarrow{c}$的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列an}的前n項(xiàng)和為Sn,a1=1,a2=2,且點(diǎn)(Sn,Sn+1)在直線y=tx+1上.
(1)求Sn及an;
(2)若數(shù)列{bn}滿足bn=$\frac{{a}_{n}}{{a}_{n}{a}_{n+1}-3{a}_{n}+1}$(n≥2),b1=1,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:當(dāng)n≥2時(shí),Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)a∈R,b∈[0,2π),若對(duì)任意實(shí)數(shù)x都有sin(3x-$\frac{π}{3}$)=sin(ax+b),則滿足條件的有序?qū)崝?shù)對(duì)(a,b)的對(duì)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求滿足下列條件的曲線方程
(1)已知拋物線頂點(diǎn)是雙曲線16x2-9y2=144的中心,準(zhǔn)線過雙曲線的左頂點(diǎn),且垂直于坐標(biāo)軸,求該拋物線的方程.
(2)已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與橢圓$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1有相同焦點(diǎn),直線y=$\sqrt{3}$x為C的一條漸近線,求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若直線y=kx-2與拋物線y2=8x交于A、B兩點(diǎn),且AB中點(diǎn)的橫坐標(biāo)為2,則此直線的斜率是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.把下列參數(shù)方程化成普通方程,其中t是參數(shù):
(1)$\left\{\begin{array}{l}{x={x}_{1}+at}\\{y={y}_{1}+bt}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{x=2p{t}^{2}}\\{y=2pt}\end{array}\right.$(p>0).

查看答案和解析>>

同步練習(xí)冊(cè)答案