A. | 將圖象上的每一點橫坐標(biāo)縮短到原來的$\frac{1}{2}$而縱坐標(biāo)不變 | |
B. | 沿x向左平移$\frac{π}{2}$個單位,再把得圖象上的每一點橫坐標(biāo)伸長到原來的2而縱坐標(biāo)不變 | |
C. | 先把圖象上的每一點橫坐標(biāo)縮短到原來的$\frac{1}{2}$而縱坐標(biāo)不變,再將所得圖象沿x向右平移$\frac{π}{4}$個單位 | |
D. | 先把圖象上的每一點橫坐標(biāo)縮短到原來的$\frac{1}{2}$而縱坐標(biāo)不變,再將所得圖象沿x向左平移$\frac{π}{2}$個單位 |
分析 利用三角函數(shù)的恒等變換化簡函數(shù)的解析式,再來一用誘導(dǎo)公式以及函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.
解答 解:把函數(shù)y=cos(x-$\frac{2}{15}$π)-$\sqrt{3}$sin(x-$\frac{2π}{15}$)=2cos[(x-$\frac{2π}{15}$)+$\frac{π}{3}$]=2cos(x+$\frac{π}{5}$)=2sin($\frac{π}{2}$+x+$\frac{π}{5}$)=2sin(x+$\frac{7π}{10}$)的圖象,
先把圖象上的每一點橫坐標(biāo)縮短到原來的$\frac{1}{2}$而縱坐標(biāo)不變,可得y=2sin(2x+$\frac{7π}{10}$)的圖象,
再將所得圖象沿x向右平移$\frac{π}{4}$個單位,可得y=2sin(2x-$\frac{π}{2}$+$\frac{7π}{10}$)=2sin(2x+$\frac{π}{5}$)的圖象,
故選:C.
點評 本題主要考查三角函數(shù)的恒等變換,誘導(dǎo)公式以及函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,4] | B. | [1,4) | C. | [1,4)∪(4,+∞) | D. | (4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 集合M={x|0<x≤3},N={x|0<x≤2},則“a∈M”是“a∈N”的充分不必要條件 | |
B. | 命題“若a∈M,則b∉M”的否命題是“若a∉M,則b∈M” | |
C. | “|a|>|b|”是“a2>b2”的必要不充分條件 | |
D. | 命題“若a,b都是奇數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b都不是奇數(shù)” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | $-\frac{π}{6}$ | $\frac{π}{12}$ | $\frac{π}{3}$ | $\frac{7π}{12}$ | $\frac{5π}{6}$ |
f(x) | 0 | 2 | 0 | -2 | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com