分析 (1)由題意可得b=$\frac{1}{{a}^{2}}$,可得3a+12b=$\frac{3a}{2}$+$\frac{3a}{2}$+$\frac{12}{{a}^{2}}$由基本不等式可得;
(2)由基本不等式可得ab=$\frac{1}{2}$•2a•b≤$\frac{1}{2}$($\frac{2a+b}{2}$)2=$\frac{1}{8}$,驗(yàn)證等號(hào)成立即可.
解答 解:(1)∵loga$\frac{1}$=-2,∴$\frac{1}$=a2,∴b=$\frac{1}{{a}^{2}}$,
∴3a+12b=3a+$\frac{12}{{a}^{2}}$=$\frac{3a}{2}$+$\frac{3a}{2}$+$\frac{12}{{a}^{2}}$≥3$\root{3}{\frac{3a}{2}•\frac{3a}{2}•\frac{12}{{a}^{2}}}$=9
當(dāng)且僅當(dāng)$\frac{3a}{2}$=$\frac{12}{{a}^{2}}$即a=2且b=$\frac{1}{4}$時(shí)取等號(hào),
∴3a+12b≥9;
(2)∵正數(shù)ab滿(mǎn)足2a+b=1,
∴ab=$\frac{1}{2}$•2a•b≤$\frac{1}{2}$($\frac{2a+b}{2}$)2=$\frac{1}{8}$,
當(dāng)且僅當(dāng)2a=b即a=$\frac{1}{4}$且b=$\frac{1}{2}$時(shí)取等號(hào),
∴ab的最大值為$\frac{1}{8}$
點(diǎn)評(píng) 本題考查不等式的證明,涉及基本不等式求最值,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 59 | B. | 31 | C. | 30 | D. | 29 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | c≥b>a | B. | c>b>a | C. | a>c≥b | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 15 | B. | 30 | C. | 31 | D. | 64 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com