【題目】在極坐標(biāo)系中,圓C的方程為ρ=2acosθ(a>0),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為 (t為參數(shù)),若直線l與圓C恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍.
【答案】解:由ρ=2acosθ得ρ2=2aρcosθ,
∴圓C的標(biāo)準(zhǔn)方程為x2+y2=2ax,
把 (t為參數(shù))代入圓的方程可得169t2﹣(14+10a)t+2﹣2a=0,
∴△=(14+10a)2﹣4×169×(2﹣2a)≥0,
解得:﹣17≤a≤ ,
又a>0,
∴0<a≤ .
∴實(shí)數(shù)a的取值范圍為(0, ]
【解析】利用圓的極坐標(biāo)方程和標(biāo)準(zhǔn)方程的轉(zhuǎn)化整理的到圓的標(biāo)準(zhǔn)方程,再把直線的參數(shù)方程代入圓的方程,整理可得169t2﹣(14+10a)t+2﹣2a=0,令△≥0解出a的取值范圍。
【考點(diǎn)精析】認(rèn)真審題,首先需要了解直線與圓的三種位置關(guān)系(直線與圓有三種位置關(guān)系:無(wú)公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos(2x+ ),將y=f(x)的圖象上所有的點(diǎn)的橫坐標(biāo)縮短為原來(lái)的 倍,縱坐標(biāo)不變;再把所得的圖象向右平移|φ|個(gè)單位長(zhǎng)度,所得的圖象關(guān)于原點(diǎn)對(duì)稱,則φ的一個(gè)值是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
(1)解方程:25x+1﹣95x+2+500=0;
(2)已知關(guān)于x的不等式ax2﹣5x+b>0的解集為 ,求關(guān)于x的不等式ax2+5x+b<0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1=﹣1,a2=1,且 .
(1)求a5+a6的值;
(2)設(shè)Sn為數(shù)列{an}的前n項(xiàng)的和,求Sn;
(3)設(shè)bn=a2n﹣1+a2n , 是否存正整數(shù)i,j,k(i<j<k),使得bi , bj , bk成等差數(shù)列?若存在,求出所有滿足條件的i,j,k;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,SA=SC,AB⊥AC,D為BC的中點(diǎn),E為AC上一點(diǎn),且DE∥平面SAB.求證:
(1)直線AB∥平面SDE;
(2)平面ABC⊥平面SDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】銳角△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且tanA﹣tanB= (1+tanAtanB).
(Ⅰ)若c2=a2+b2﹣ab,求角A、B、C的大;
(Ⅱ)已知向量 =(sinA,cosA), =(cosB,sinB),求|3 ﹣2 |的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:x∈[2,4],x2﹣2x﹣2a≤0恒成立,命題q:f(x)=x2﹣ax+1在區(qū)間 上是增函數(shù).若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為研究男女同學(xué)空間想象能力的差異,孫老師從高一年級(jí)隨機(jī)選取了20名男生、20名女生,進(jìn)行空間圖形識(shí)別測(cè)試,得到成績(jī)莖葉圖如下,假定成績(jī)大于等于80分的同學(xué)為“空間想象能力突出”,低于80分的同學(xué)為“空間想象能力正!保
(1)完成下面2×2列聯(lián)表,
空間想象能力突出 | 空間想象能力正常 | 合計(jì) | |
男生 |
|
| |
女生 |
| ||
合計(jì) |
|
(2)判斷是否有90%的把握認(rèn)為“空間想象能力突出”與性別有關(guān);
(3)從“空間想象能力突出”的同學(xué)中隨機(jī)選取男生2名、女生2名,記其中成績(jī)超過(guò)90分的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望. 下面公式及臨界值表僅供參考:
P(X2≥k) | 0.100 | 0.050 | 0.010 |
k | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com