【題目】設(shè)函數(shù) ,則滿足f(x)+f(x﹣1)≥2的x的取值范圍是

【答案】
【解析】解:∵函數(shù) ,

滿足f(x)+f(x﹣1)≥2,

當(dāng)x≤0時(shí),x﹣1≤﹣1,

f(x)+f(x﹣1)=2x+1+2(x﹣1)+1=4x≥2,解得x ,不成立;

當(dāng) ,即0<x≤1時(shí),

f(x)+f(x﹣1)=4x+2(x﹣1)+1=4x+2x﹣1≥2,解得 ;

當(dāng)x﹣1>0時(shí),f(x)+f(x﹣1)=4x+4x﹣1≥2,解得x>1.

綜上,x的取值范圍是[ ).

所以答案是:

【考點(diǎn)精析】利用函數(shù)的值對(duì)題目進(jìn)行判斷即可得到答案,需要熟知函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知I為△ABC的內(nèi)心,cosA= ,若 =x +y ,則x+y的最大值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,圓C的方程為ρ=2acosθ(a>0),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為 (t為參數(shù)),若直線l與圓C恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)與g(x)的圖象關(guān)于原點(diǎn)對(duì)稱,且它們的圖象拼成如圖所示的“Z”形折線段ABOCD,不含A(0,1),B(1,1),O(0,0),C(﹣1,﹣1),D(0,﹣1)五個(gè)點(diǎn).則滿足題意的函數(shù)f(x)的一個(gè)解析式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于給定的正整數(shù)k,如果各項(xiàng)均為正數(shù)的數(shù)列{an}滿足:對(duì)任意正整數(shù)n(n>k),an﹣kan﹣k+1…an﹣1an+1…an+k﹣1an+k=an2k總成立,那么稱{an}是“Q(k)數(shù)列”.
(1)若{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,判斷{an}是否為“Q(2)數(shù)列”,并說(shuō)明理由;
(2)若{an}既是“Q(2)數(shù)列”,又是“Q(3)數(shù)列”,求證:{an}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某景點(diǎn)擬建一個(gè)扇環(huán)形狀的花壇(如圖所示),按設(shè)計(jì)要求扇環(huán)的周長(zhǎng)為36米,其中大圓弧所在圓的半徑為14米,設(shè)小圓弧所在圓的半徑為x米,圓心角為θ(弧度).

(1)求θ關(guān)于x的函數(shù)關(guān)系式;
(2)已知對(duì)花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時(shí),直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為16元/米,設(shè)花壇的面積與裝飾總費(fèi)用之比為y,求y關(guān)于x的函數(shù)關(guān)系式,并求出y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題P:函數(shù) 的定義域?yàn)镽;命題q:x∈R,使不等式a>e2x﹣ex成立;命題“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求∠C;
(2)若c= ,△ABC的面積為 ,求△ABC的周長(zhǎng);
(3)若c= ,求△ABC的周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知| |=4,| |=3,(2 ﹣3 )(2 + )=61.
(1)求 的夾角θ;
(2)求| + |和| |.

查看答案和解析>>

同步練習(xí)冊(cè)答案