橢圓
x2
3
+
y2
4
=1的離心率是
 
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì),圓錐曲線的實(shí)際背景及作用
專題:圓錐曲線的定義、性質(zhì)與方程
分析:先根據(jù)由橢圓的標(biāo)準(zhǔn)方程求的a和b,再根據(jù)c=
a2-b2
求得c,進(jìn)而根據(jù)離心率的公式求得答案.
解答: 解:由橢圓的標(biāo)準(zhǔn)方程
x2
3
+
y2
4
=1
可知,a=2,b=
3
,
∴c=
a2-b2
=1
∴e=
c
a
=
1
2

故答案為:
1
2
點(diǎn)評(píng):本題主要考查了橢圓的簡(jiǎn)單性質(zhì).屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一次函數(shù)f(x)=ax-2.
(1)當(dāng)a=3時(shí),解不等式|f(x)|<4;
(2)解關(guān)于x的不等式|f(x)|<4;
(3)若不等式|f(x)|≤3對(duì)任意x∈[0,1]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1
x
,求f′(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

實(shí)數(shù)x,y滿足條件
x+y-4≤0
x-2y+2≥0
x≥0,y≥0
,則z=2x-y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
2x-1
x+1
,則函數(shù)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若銳角A,B,C滿足A+B+C=π,以角A,B,C分別為內(nèi)角構(gòu)造一個(gè)三角形,設(shè)角A,B,C所對(duì)的邊分別是a,b,c,依據(jù)正弦定理和余弦定理,得到等式:sin2A=sin2B+sin2C-2sinBsinCcosA,現(xiàn)已知銳角A,B,C滿足A+B+C=π,則(
π
2
-
A
2
)+(
π
2
-
B
2
)+(
π
2
-
C
2
)=π,類比上述方法,可以得到的等式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某一項(xiàng)籃球邀請(qǐng)賽,甲、乙兩名籃球運(yùn)動(dòng)員都參加了7場(chǎng)比賽,他們各場(chǎng)比賽得分的情況用如圖莖葉圖表示.則甲、乙兩名運(yùn)動(dòng)員得分的中位數(shù)分別為
 
,
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C的極坐標(biāo)方程為:ρ2=2ρcosθ-mρsinθ+4上的兩點(diǎn)M、N關(guān)于直線
x=t-
1
2
y=1-2t
(t為參數(shù))對(duì)稱,則m=
 
;直線l:tx+y-t+1=0(t∈R)與曲線C相交于A、B兩點(diǎn),則|AB|的最小值是
 
.(注:極坐標(biāo)系的極軸OX與直角坐標(biāo)系的X軸的非負(fù)半軸重合且單位長(zhǎng)度相同)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
4x+2
的定義域?yàn)椋ā 。?/div>
A、(-
1
2
,+∞)
B、{x|x≥-
1
2
}
C、(-∞,-
1
2
D、{x|x≤-
1
2
}

查看答案和解析>>

同步練習(xí)冊(cè)答案