7.計(jì)算:24•($\frac{2}{5}$)-2-${9}^{{log}_{3}5}$•(lg16+lg625)-log49•log2431024.

分析 利用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的運(yùn)算性質(zhì)、換底公式即可得出.

解答 解:原式=$16×\frac{25}{4}$-${3}^{2lo{g}_{3}5}$•lg104-$\frac{2lg3}{2lg2}×\frac{10lg2}{5lg3}$
=100-25×4-2
=-2.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的運(yùn)算性質(zhì)、換底公式,考查了計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=ax4+bx2+x,f(2)=-1,求f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知奇函數(shù)f(x)的定義域?yàn)镽,當(dāng)x>0時(shí),f(x)=2x-x2,若x∈[a,b]時(shí),函數(shù)f(x)的值域?yàn)閇$\frac{1}$,$\frac{1}{a}$],則ab=$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.△ABC的內(nèi)切圓的半徑為r,外接圓半徑為R,則$\frac{r}{4R}$的值等于( 。
A.sin$\frac{A}{2}$sin$\frac{B}{2}$sin$\frac{C}{2}$B.cos$\frac{A}{2}$cos$\frac{B}{2}$cos$\frac{C}{2}$C.sin$\frac{A}{2}$cos$\frac{B}{2}$cos$\frac{C}{2}$D.sin$\frac{A}{2}$sin$\frac{B}{2}$cos$\frac{C}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.sin47°cos13°+sin167°sin43°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知角θ的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊為x軸的正半軸,若P(4,y)是角θ終邊上一點(diǎn),且tanθ=-$\frac{5}{8}$,則y=-$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知cot(θ+$\frac{7}{2}$π)=$\frac{3}{4}$($\frac{π}{2}$<θ<π),cos(π-α)=$\frac{1}{2}$($\frac{π}{2}$<α<π),求下列各式的值:
$\frac{sinθ+cosθ}{sinθ-cosθ}$,sin2θ,cos(-2α),sin(α-$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知sinα+cosα=$\frac{1}{3}$,α∈(0,π),那么sin2α,cos2α的值分別為-$\frac{8}{9}$;-$\frac{\sqrt{17}}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)f(x)是定義在R上的偶函數(shù),且當(dāng)x≥0時(shí):f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,0≤x<1}\\{lnx,x≥1}\end{array}\right.$,若對(duì)任意的x∈[a,a+1],不等式f(2x)≤(x+a)恒成立,則實(shí)數(shù)a的最大值為-$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案