分析 (1)求出A-1,確定坐標之間的關系,即可求C1的方程;
(2)設P(x,y)為圓C上的任意一點,在矩陣A對應的變換下變?yōu)榱硪粋點P'(x',y'),代入橢圓方程,對照圓的方程即可求出a和b的值.
(3)A2=$(\begin{array}{l}{1}&{1}\\{2}&{1}\end{array})$,利用條件建立方程,即可得出結論;
(4)先計算MN,再求點A、B、C在矩陣MN對應的變換下得到點分別為A1、B1、C1的坐標,利用△A1B1C1的面積是△ABC面積的2倍,可求k的值.
解答 解:(1)由題意,A=$(\begin{array}{l}{1}&{2}\\{0}&{1}\end{array})$$(\begin{array}{l}{1}&{2}\\{0}&{1}\end{array})$=$[\begin{array}{l}{1}&{5}\\{0}&{1}\end{array}]$,行列式為1,A-1=$[\begin{array}{l}{1}&{0}\\{-5}&{1}\end{array}]$,
設曲線C1上的點為(x,y),曲線C:x2+2y2=1的點為(a,b),
則$\left\{\begin{array}{l}{a=x}\\{-5a+b=y}\end{array}\right.$,∴a=x,b=5x+y,
∴x2+2(5x+y)2=1;
(2)設P(x,y)為圓C上的任意一點,
在矩陣A對應的變換下變?yōu)榱硪粋點P'(x',y'),
則$[\begin{array}{l}{x′}\\{y}\end{array}]$=$[\begin{array}{l}{a}&{0}\\{0}&\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$,即$\left\{\begin{array}{l}{x′=ax}\\{y′=by}\end{array}\right.$
又因為點P'(x',y')在橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1上,所以$\frac{{a}^{2}{x}^{2}}{9}+\frac{^{2}{y}^{2}}{4}=1$.
由已知條件可知,x2+y2=1,所以 a2=9,b2=4.
因為 a>0,b>0,
所以 a=3,b=2;
(3)A2=$(\begin{array}{l}{1}&{1}\\{2}&{1}\end{array})$$(\begin{array}{l}{1}&{1}\\{2}&{1}\end{array})$=$[\begin{array}{l}{3}&{2}\\{4}&{3}\end{array}]$,
設$\overrightarrow{α}$=$[\begin{array}{l}{x}\\{y}\end{array}]$,則$[\begin{array}{l}{3}&{2}\\{4}&{3}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{1}\\{2}\end{array}]$
∴$\left\{\begin{array}{l}{3x+2y=1}\\{4x+3y=2}\end{array}\right.$,解得:x=-1,y=2,
∴$\overrightarrow{α}$=$[\begin{array}{l}{-1}\\{2}\end{array}]$;
(4)由題設得MN=$[\begin{array}{l}{0}&{k}\\{1}&{0}\end{array}]$
由$[\begin{array}{l}{0}&{k}\\{1}&{0}\end{array}]$$[\begin{array}{l}{0}&{-2}&{-2}\\{0}&{0}&{1}\end{array}]$=$[\begin{array}{l}{0}&{0}&{k}\\{0}&{-2}&{-2}\end{array}]$,
可知A1(0,0)、B1(0,-2)、C1(k,-2)
計算得△ABC面積的面積是1,△A1B1C1的面積是k的絕對值,則由題設可知:k的值為2或-2.
點評 本題主要考查了矩陣變換與性質,同時考查了計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | A=R,B={x|x>0},f:x→y=|x| | B. | A=Z,B=N*,f:x→y=x2 | ||
C. | A=Z,B=Z,f:x→y=$\sqrt{x}$ | D. | A=[-1,1],B={0},f:x→y=0 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4個 | B. | 3個 | C. | 2個 | D. | 1個 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com