9.不等式組$\left\{\begin{array}{l}{y≥1}\\{x-y+2≥0}\\{x+4y-8≤0}\end{array}\right.$表示的平面區(qū)域?yàn)棣,直線x=a將Ω分成面積相等的兩部分,則實(shí)數(shù)a的值為4-$\sqrt{10}$.

分析 畫出平面區(qū)域的面積,結(jié)合圖象只需S△ADE的面積是$\frac{5}{4}$,根據(jù)三角形的面積公式求出a的值即可.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:

平面區(qū)域ABC的面積是$\frac{1}{2}$AC•BF=$\frac{5}{2}$,
由直線x=a分別和x+4y-8=0、直線y=1相交得:
D(1,2-$\frac{a}{4}$),E(a,1),
直線x=a將Ω分成面積相等的兩部分,
即S△ADE=$\frac{1}{2}$(4-a)(1-$\frac{a}{4}$)=$\frac{5}{4}$,
解得:a=4-$\sqrt{10}$,
故答案為:4-$\sqrt{10}$.

點(diǎn)評(píng) 本題考查了簡單的線性規(guī)劃問題,考查三角形問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)f(x)=$\sqrt{2-{2}^{x}}$+$\frac{1}{lo{g}_{3}x}$的定義域?yàn)椋ā 。?table class="qanwser">A.{x|x<1}B.{x|0<x<1}C.{x|0<x≤1}D.{x|x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線x-y+4=0被圓(x+2)2+(y-2)2=2截得的弦長等于(  )
A.$12\sqrt{2}$B.$2\sqrt{2}$C.$3\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別是F1、F2,過F2的直線x+y-$\sqrt{3}$=0交C于A、B兩點(diǎn),線段AB的中點(diǎn)為($\frac{2\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$).
(1)求C的方程;
(2)在C上是否存在點(diǎn)P,使S△PAB=S${\;}_{△{F}_{1}AB}$?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}前n項(xiàng)和Sn,${a_n}=1-2{S_n}_{\;}({n∈{N^*}})$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若${b_n}={log_{\frac{1}{3}}}{a_{2n-1}},{c_n}=\frac{{4{n^2}}}{{{b_n}{b_{n+1}}}},{T_n}$為數(shù)列{cn}的前n項(xiàng)和,求不超過T2016的最大的整數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}中,a1=-2,a2=3,且$\frac{{a}_{n+2}-3{a}_{n+1}}{{a}_{n+1}-3{a}_{n}}$=3,則數(shù)列{$\frac{{a}_{n}}{3n-5}$}的前n項(xiàng)和Sn=$\frac{1}{2}$(3n-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)點(diǎn)A(x1,y2),B(x2,y2)是橢圓$\frac{{x}^{2}}{4}$+y2=1上兩點(diǎn).若過點(diǎn)A,B且斜率分別為$\frac{{x}_{1}}{4{y}_{1}}$,-$\frac{{x}_{2}}{4{y}_{2}}$的直線交于點(diǎn)P,且直線OA與直線OB的斜率之積為-$\frac{1}{4}$,E($\sqrt{6}$,0),則|PE|的最小值為2$\sqrt{2}$-$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖是一個(gè)多面體的三視圖,其中正視圖為正方形,俯視圖是腰長為2的等腰直角三角形,則該多面體的最大面的面積是4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}滿足a1=1,an+1=-$\frac{1}{2}$an+1,試歸納出這個(gè)數(shù)列的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案