1.設(shè)點(diǎn)A(x1,y2),B(x2,y2)是橢圓$\frac{{x}^{2}}{4}$+y2=1上兩點(diǎn).若過點(diǎn)A,B且斜率分別為$\frac{{x}_{1}}{4{y}_{1}}$,-$\frac{{x}_{2}}{4{y}_{2}}$的直線交于點(diǎn)P,且直線OA與直線OB的斜率之積為-$\frac{1}{4}$,E($\sqrt{6}$,0),則|PE|的最小值為2$\sqrt{2}$-$\sqrt{6}$.

分析 設(shè)出橢圓的參數(shù)方程,可得A(2cosα,sinα),B(2cosβ,sinβ),運(yùn)用導(dǎo)數(shù),得到切線AP,BP的方程,聯(lián)立求得交點(diǎn)P的坐標(biāo),x=$\frac{2(sinβ-sinα)}{sin(β-α)}$,y=$\frac{cosβ-cosα}{sin(α-β)}$,再由斜率之積為-$\frac{1}{4}$,得到cos(β-α)=0,sin(β-α)=±1,sin2(β-α)=1,即有P在橢圓($\frac{x}{2}$)2+y2=2上,設(shè)P(2$\sqrt{2}$cosθ,$\sqrt{2}$sinθ),求得|PE|,運(yùn)用余弦函數(shù)的值域,即可得到最小值.

解答 解:由橢圓$\frac{{x}^{2}}{4}$+y2=1,可設(shè)A(2cosα,sinα),B(2cosβ,sinβ),
對$\frac{{x}^{2}}{4}$+y2=1兩邊對x取導(dǎo)數(shù),可得$\frac{x}{2}$+2y•y′=0,即有切線的斜率為-$\frac{x}{4y}$,
由題意可得AP,BP均為橢圓的切線,A,B為切點(diǎn),
則直線AP的方程為$\frac{x{x}_{1}}{4}$+yy1=1,即為$\frac{xcosα}{2}$+ysinα=1,
同理可得直線BP的方程為$\frac{xcosβ}{2}$+ysinβ=1,
求得交點(diǎn)P的坐標(biāo)為,x=$\frac{2(sinβ-sinα)}{sin(β-α)}$,y=$\frac{cosβ-cosα}{sin(α-β)}$,
即有($\frac{x}{2}$)2+y2=$\frac{(sinβ-sinα)^{2}+(cosβ-cosα)^{2}}{si{n}^{2}(β-α)}$=$\frac{2-2cos(β-α)}{si{n}^{2}(α-β)}$,
由kOA•kOB=-$\frac{1}{4}$,可得$\frac{sinα}{2cosα}$•$\frac{sinβ}{2cosβ}$=-$\frac{1}{4}$,
即有cos(β-α)=0,sin(β-α)=±1,sin2(β-α)=1,
則($\frac{x}{2}$)2+y2=2,即$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1,
設(shè)P(2$\sqrt{2}$cosθ,$\sqrt{2}$sinθ),|PE|=$\sqrt{(2\sqrt{2}cosθ-\sqrt{6})^{2}+(\sqrt{2}sinθ)^{2}}$
=$\sqrt{6co{s}^{2}θ-8\sqrt{3}cosθ+8}$=|$\sqrt{6}$cosθ-2$\sqrt{2}$|,
當(dāng)cosθ=1時,|PE|min=2$\sqrt{2}$-$\sqrt{6}$.
故答案為:2$\sqrt{2}$-$\sqrt{6}$.

點(diǎn)評 本題考查橢圓的方程的運(yùn)用,主要考查橢圓的參數(shù)方程的運(yùn)用,注意運(yùn)用三角函數(shù)的恒等變換和余弦函數(shù)的值域,考查運(yùn)算化簡能力,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知直線l:x=5,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)F,A是橢圓C上任意一點(diǎn),|AF|的最小值為$\sqrt{5}$-1,且點(diǎn)A到直線l的距離最小值為5-$\sqrt{5}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若動直線l1:y=kx+m與橢圓C有且只有一個交點(diǎn)P,且與直線l交于點(diǎn)Q,問:以線段PQ為直徑的圓是否經(jīng)過x軸上的定點(diǎn),若存在,求出點(diǎn)M坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若x,y滿足$\left\{\begin{array}{l}{y≥0}\\{x-y+3≥0}\\{kx-y+3≥0}\end{array}\right.$,且z=2x+y的最大值為4,則k的值為-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.不等式組$\left\{\begin{array}{l}{y≥1}\\{x-y+2≥0}\\{x+4y-8≤0}\end{array}\right.$表示的平面區(qū)域為Ω,直線x=a將Ω分成面積相等的兩部分,則實(shí)數(shù)a的值為4-$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}滿足3an+1+anan+1=3an,a1=3.
(1)求證:數(shù)列{$\frac{1}{{a}_{n}}$}是等差數(shù)列;
(2)設(shè)bn=anan+1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足a1=1,an+1=3an+2
(I)求{an}的通項公式;
(Ⅱ)設(shè)bn=(2n+1)(an+1),求{bn}的前項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列命題正確的是(2)(5)
(1)若$\overrightarrow{a}$≠$\overrightarrow{o}$,$\overrightarrow{a}•\overrightarrow$=$\overrightarrow{a}•\overrightarrow{c}$;
(2)對任一向量$\overrightarrow{a}$,有$\overrightarrow{{a}^{2}}$=|$\overrightarrow{a}$|2;
(3)若$\overrightarrow{a}•\overrightarrow$=$\overrightarrow{0}$,則,$\overrightarrow{a}$與$\overrightarrow$中至少有一個為$\overrightarrow{0}$;
(4)|$\overrightarrow{a}•\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|;
(5)$\overrightarrow{a}$與$\overrightarrow$是兩個單位向量,則$\overrightarrow{{a}^{2}}$=$\overrightarrow{^{2}}$;
(6)若|$\overrightarrow{a}+\overrightarrow$=|$\overrightarrow{a}$|+|$\overrightarrow$|,則$\overrightarrow{a}$⊥$\overrightarrow$;
(7)($\overrightarrow{a}•\overrightarrow$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow•\overrightarrow{c}$)對任意向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=log5(2x+1)的導(dǎo)數(shù)是$\frac{2}{(2x+1)ln5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=sin(5x+$\frac{π}{4}$)的圖象的對稱中心是($\frac{1}{5}$kπ-$\frac{π}{20}$,0)k∈Z.

查看答案和解析>>

同步練習(xí)冊答案